Teacher Notes:

Big Ideas: Using the ruler postulate to find distance

Definition of Postulate/Axiom/Theorem

Congruent Segments

Segment Addition Postulate

**I don't like the book assignment -- WAY too easy. The assignment for this lesson is a WS.

1.2 Measuring and Constructing Segments

Simplify.

Simplify.

$$\frac{2}{1}\left(\frac{2}{9}\right)\left(\frac{3}{2}\right)^{9}$$

$$\frac{2}{1}\left(\frac{2}{9}\right)\left(\frac{3}{2}\right)^{9}$$

$$\frac{2}{1}\left(\frac{2}{9}\right)\left(\frac{3}{2}\right)^{9}$$

$$\frac{2}{1}\left(\frac{2}{9}\right)\left(\frac{3}{2}\right)^{9}$$

$$\frac{2}{1}\left(\frac{2}{9}\right)\left(\frac{3}{2}\right)^{9}$$

$$\frac{1}{1}\left(\frac{2}{9}\right)\left(\frac{3}{2}\right)^{9}$$

$$\frac{1}{1}\left(\frac{2}{9}\right)\left(\frac{3}{2}\right)^{9}$$

$$\frac{1}{1}\left(\frac{2}{9}\right)\left(\frac{3}{2}\right)^{9}$$

$$\frac{1}{1}\left(\frac{3}{9}\right)\left(\frac{3}{2}\right)^{9}$$

$$\frac{1}{1}\left(\frac{3}{9}\right)\left(\frac{3}{9}\right)^{9}$$

$$\frac{1}{1}\left(\frac{3}{9}\right)^{9}$$

$$\frac{1}{1}\left(\frac{3}{9}\right)^{$$

4.
$$\frac{3}{3} \times \frac{3}{4}$$

2.
$$4-2\frac{1}{4}$$
 $\frac{4}{1}$ $-\frac{9}{4}$ $\frac{10}{4}$ $-\frac{9}{4}$ $\frac{7}{4}$

5.
$$\frac{2}{5} \times \frac{10^2}{5}$$

3.
$$\frac{2}{5} \div \frac{1}{10}$$
 $\frac{2}{5}$ $\frac{10}{10}$

6.
$$\frac{4}{10} \div \frac{2}{38}$$

Ruler Postulate

The <u>distance</u> (or **length**) between any two points is the absolute value of the difference of the coordinates.

$$AB = |a - b|$$
 or $|b - a|$

Find each length.

A. BC

B. AC

<u>Congruent Segments</u> - line segments with the same length

can say "the length of \overline{AB} is equal to the length of \overline{CD} ," or you can say " \overline{AB} is congruent to \overline{CD} ." The symbol \cong means "is congruent to."

Lengths are equal.

$$AB = CD$$

"is equal to"

Segments are congruent.

$$\overline{AB} \cong \overline{CD}$$

"is congruent to"

**Tick marks are used to show congruent segments

Plot J(-3, 4), K(2, 4), L(1, 3), and M(1, -2) in a coordinate plane. Then determine whether \overline{JK} and \overline{LM} are congruent.

Plot A(-2, 4), B(3, 4), C(0, 2), and D(0, -2) in a coordinate plane. Then determine whether \overline{AB} and \overline{CD} are congruent.

When three points are collinear, you can say that one point is between the other two.

Point B is between points A and C.

Point *E* is not between points *D* and *F*.

G Postulate

Postulate 1.2 Segment Addition Postulate

If B is between A and C, then AB + BC = AC.

If
$$AB + BC = AC$$
, then B is between A and C.

Use the diagram at the right.

In the diagram, WY = 30. Can you use the Segment Addition Postulate to find the distance between points W and Z? Explain your reasoning.

no-all points need to be on the same line to use seg, addition The cities shown on the map lie approximately in a straight line. Find the distance from Tulsa, Oklahoma, to St. Louis, Missouri.

9. The cities shown on the map lie approximately in a straight line. Find the distance from Albuquerque, New Mexico, to Provo, Utah.

