1.3A - Midpoint and Bisect

Find the slope.

1,

$$M = \frac{40}{20} = \frac{2}{1}$$

$$M = \frac{2 - (-4)}{1 - 4} = \frac{6}{3} = \frac{2}{1}$$

$$M = \frac{1}{2}$$

	M	-	1					
			+4	+6,-	+2	M =	42	= 2
٠	x	-5	-1	5	7		1	
	у	-3	-1	2	3			
			3	73	41			

Warm Up

Find the missing angle measure.

X + 118 = 180

48°

4.

X+71+101+119=3600 X+.121+129+96+85=540

Midpoints and Segment Bisectors

The midpoint of a segment is the point that divides the segment into two congruent segments.

M is the midpoint of AB. So, $\overline{AM} \cong \overline{MB}$ and $\overline{AM} = \overline{MB}$.

A segment bisector is a point, ray, line, line segment, or plane that intersects the segment at its midpoint. A midpoint or a segment bisector bisects a segment.

CD is a segment bisector of AB. So, $\overline{AM} \cong \overline{MB}$ and $\overline{AM} = \overline{MB}$.

Core Concept

ED=DF

$$4X+6=7x-9$$
 $-4X$
 $-4X$

D is the midpoint of \overline{EF} , $ED=4x+6$
 $DF=7x-9$. Find ED , DF , and EF .

$$E \quad 4x+6 \quad D \quad 7x-9$$

$$ED=4(5)+6=26$$

$$DF=26$$

$$EF=52$$
S is the midpoint of RT , $RS=-2x$

$$ST=-3x-3$$
. Find RS . $ST=-3x-3$.

D is the midpoint of \overline{EF} , ED = 4x + 6, and

$$E = 4x + 6$$
 D $7x - 9$ **F** $4(5) + 6 = 26$

$$ED = 4(5) + 6 = 26$$

S is the midpoint of *RT*, RS = -2x, and RS = STST = -3x - 2 Find RS, ST, and RT.

the midpoint of
$$RT$$
, $RS = -2x$, and $RS = 8T$
 $= -3x - 2$. Find RS , ST , and RT . $-2x = -3x - 2$
 $R = -2x$ $S = -3x - 2$ $T = -2x$
 $RS = -2(-2) = 4$ $RT = 8$
 $RT = 4$

$$RS = -2(-2) = 4$$
 $RT = 8$ $ST = 4$

May 22-1:45 PM

May 22-1:46 PM

Points A, B, and C are collinear. Point B is between A and C. Find the length indicated.

1)
$$BC = 2x + 26$$
, $AB = 2$, and $AC = x + 18$.
Find AC .
 $AB + BC = AC$
 $2 + 2x + 26 = x + 18$
 $2x + 28 = x + 18$
 $x + 28 = 18$

2) Find BC if BC = x, AB = 11, and AC = 3x - 11.

$$AB+BC = AC$$
 $11 + x = 3x-11$
 $-x - x$
 $11 = 2x-11$
 $AC = 3(11)-11$
 $AC = 33-11$

$$\frac{22}{2} = \frac{2x}{2}$$
 May 22-1:48 PM $AC = 22$

Homework:

WS 1.3A Midpoint and Bisector

1.3B - Midpoint in the Coordinate Plane

Point M is the midpoint of \overline{VW} . Find the length of \overline{VM} .

$$V$$
 M W

$$VM = MW$$
 $4|X-1 = 3|X+3$
 $-3|X = -3|X$
 $X-1 = 3$
 $YM = 1(4)-1$
 $YM = 15$
 $YM = 15$
May 23-6:46

$$\frac{-3}{x} = \frac{3}{x}$$

Identify the segment bisector of \overline{PQ} . Then find PQ.

m is the bisector

2.

M is the bisector

$$PQ = \frac{32}{7}$$

Monitoring Progress 1-2

Core Concept

a. The endpoints of \overline{RS} are R(1, -3) and S(4, 2). Find the coordinates of the midpoint M.

$$\left(\frac{X_1+X_2}{2},\frac{Y_1+Y_2}{2}\right) \rightarrow \left(\frac{1+4}{2},\frac{-3+2}{2}\right) \rightarrow \left(\frac{5}{2},\frac{-1}{2}\right)$$

b. The midpoint of \overline{JK} is M(2, 1). One endpoint is J(1, 4). Find the coordinates of endpoint K.

5. The endpoints of \overline{AB} are A(1, 2) and B(7, 8). Find the coordinates of the midpoint M.

 $\begin{pmatrix} X_1 + X_2 \\ 2 \end{pmatrix}, \begin{pmatrix} Y_1 + Y_2 \\ 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 + 7 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 + 8 \\ 2 \end{pmatrix} \rightarrow \begin{pmatrix} 8 \\ 2 \end{pmatrix}, \begin{pmatrix} 10 \\ 2 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & 15 \\ 2 \end{pmatrix}$

6. The endpoints of \overline{CD} are C(-4, 3) and D(-6, 5). Find the coordinates of the midpoint M.

 $\left(\frac{\chi_1+\chi_2}{2},\frac{\chi_1+\chi_2}{2}\right) \rightarrow \left(\frac{-4+(-6)}{2},\frac{3+5}{2}\right) \rightarrow \left(\frac{-10}{2},\frac{8}{2}\right) \rightarrow \left(-5,4\right)$

7. The midpoint of \overline{TU} is M(2, 4). One endpoint is T(1, 1). Find the coordinates of endpoint U.

8. The midpoint of VW is M(-1, -2). One endpoint is W(4, 4). Find the coordinates of endpoint V.

Monitoring Progress 5-8

-6

Homework:

WS 1.3B - Midpoint Formula

1.3C Pythagorean Theorem and Distance Formula

Bellwork:

1. M is the midpoint of AB. AM = 3x + 12. MB = 6x - 3. Find the length of AB.

$$AM = M8$$
 $3x + 12 = 6x - 3$
 $-3x$
 $-3x$
 $12 = 3x - 3$
 $+3$
 $15 = 3x$
 $AM = 3(5) + 12 = 27$
 $AB = 2(AM)$
 $AB = 2(27)$
 $AB = 54$

May 23-8:03 AM
 $AB = 54$

Theorem 1-6-1 Pythagorean Theorem

In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

hypotenuse.

$$a^2 + b^2 = c^2$$

*** c will always be the side **across** from the right angle

*** Length and Distance are the same thing***

** Can do Proof of Pythagorean Theorem Here**

Use the Pythagorean Theorem to find the distance, to the nearest tenth, from D(3, 4) to E(-2, -5).

$$a^{2}+b^{2}=c^{2}$$

$$5^{2}+9^{2}=c^{2}$$

$$25+81=c^{2}$$

$$\sqrt{106}=c^{2}$$

$$\sqrt{106}=c$$

May 23-7:43 AM

Use the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S.

R(3, 2) and S(-3, -1)

$$0^{2} + 6^{2} = 0^{2}$$
 $3^{2} + 6^{2} = 0^{2}$
 $9 + 36 = 0^{2}$
 $\sqrt{45} = \sqrt{2}$
 $\sqrt{45} = \sqrt{2}$

May 23-7:44 AM

Find the missing side length of the right triangle. Leave your answer in simplest radical form

(exact).

$$0^{2} + b^{2} = 0^{2}$$

$$8^{2} + b^{2} = 12^{2}$$

$$04 + b^{2} = 144$$

$$-04 - 04$$

$$b^{2} = 80$$

$$\sqrt{b^{2}} = 80$$

$$\sqrt{4}$$

$$\sqrt{20}$$

Aug 22-4:49 PM

Find the missing side length of the right triangle. Leave your answer in simplest radical form (exact).

$$A^{2} + b^{2} = (^{2})^{2}$$
 $3^{2} + b^{2} = (\sqrt{15})^{2}$
 $9 + b^{2} = 15$
 -9
 $b^{2} = 6$
 $b^{2} = 6$

Use the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S.

$$R(-4, 5)$$
 and $S(2, -1)$

$$0^{2} + 0^{2} = 0^{2}$$
 $0^{2} + 0^{2} = 0^{2}$
 $36 + 36 = 0^{2}$
 $\sqrt{72} = \sqrt{0^{2}}$
 $\sqrt{36}$
 $\sqrt{2}$

May 23-7:45 AM

Distance Formula:

The distance between two points can be found using the formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Steps:

- 1. Label the points
- 2. Write the formula
- 3. Plug the points into the formula
- 4. Simplify

Example

Find the length of GK, given G(5,5) and K(-1,-3) $\chi_l \ \gamma_\ell$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(-1 - 5)^2 + (-3 - 5)^2}$$

$$d = \sqrt{(-6)^2 + (-8)^2}$$

$$d = \sqrt{36 + 64}$$

$$d = \sqrt{100}$$

$$d = \sqrt{100}$$

May 23-7:36 AM

Find *EF* and *GH*. Then determine if $\overline{EF} \cong \overline{GH}$.

$$F(-2, 1), F(-5, 5), G(-1, -2), H(3, 1)$$

$$EF = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$EF = \sqrt{(-5 - (-2))^2 + (5 - 1)^2}$$

$$EF = \sqrt{(-3)^2 + (4)^2}$$

GH=
$$\sqrt{(3-(-1))^2+(1-(-2))^2}$$

GH= $\sqrt{(4)^2+(3)^2}$
GH= $\sqrt{16+9}$
GH= $\sqrt{25}$
GH= $\sqrt{2}$

Your school is 4 miles east and 1 mile south of your apartment. A recycling center, where your class is going on a field trip, is 2 miles east and 3 miles north of your apartment. Estimate the distance between the recycling center and your school.

Recycle (2,3)

Apt (0,0) School (4,-1)

$$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$$
 $d = \sqrt{(4-2)^2 + (-1-3)^2}$
 $d = \sqrt{(2)^2 + (-4)^2}$
 $d = \sqrt{4 + 16}$
 $d = \sqrt{20} = 2\sqrt{5}$ or about 4.5 miles

Example 4

Given the following points, find the distance between them.

- 1. (-4, 6) and (8, -3)
- 2. (-1, -1) and (0, 6)
- 3. (5/3, -7) and (-1/2, 2)
- 4. (1.5, -3.1) and (9, 4.2)

Homework:

WS 1.3C - Pythagorean Theorem and Distance Formula

May 23-8:04 AM