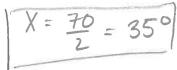
10.2 Finding Arc Measures Bellwork:

Determine the value of *x* for the circle graph. Pay close attention to the units.

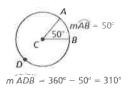
1. x 34%


2. 61° x

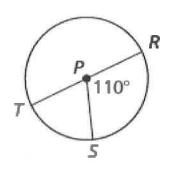
3. 120° 76° x

X = 100 - (34 + 14 + 23)X = 29

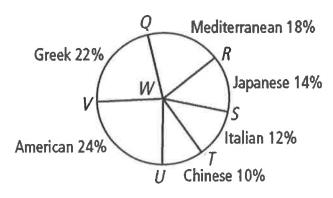
X = 180 - 61 X = 1190


360 - (120 + 94 + 76) 360 - 290 70

A <u>central angle</u> is an angle whose vertex is the center of a circle. An <u>arc</u> is a portion of a circle.


ARC	MEASURE	DIAGRAM
A minor arc is an arc whose points are on or in the interior of a central angle.	The measure of a minor arc is equal to the measure of its central angle. $m\widehat{AC} = m\angle ABC = x^{\circ}$	B K
A major arc is an arc whose points are on or in the exterior of a central angle.	The measure of a major arc is equal to 360° minus the measure of its central angle. $\widehat{mADC} = 360^{\circ} - m \angle ABC = 360^{\circ} - x^{\circ}$	BE BE
f the endpoints of an arc lie on a diameter, he arc is a semicircle.	The measure of a semicircle is equal to 180° , $m\widehat{EFG} = 180^{\circ}$	E F

Minor arcs may be named by two points. Major arcs and semicircles must be named by three points.

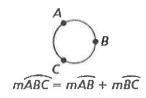

Find the measure of each arc of $\odot P$, where \overline{RT} is a diameter.

c.
$$\widehat{RST}$$
 m $\widehat{RST} = 180^{\circ}$

The circle graph shows the types of cuisine available in a city. Find mTRQ.

Types of Food

$$TRQ = 12\% + 14\% + 1890 = 44\%$$


$$mTRQ = (.44)(360) = 158.4^{\circ}$$

Adjacent arcs are arcs of the same circle that intersect at exactly one point. RS and ST are adjacent arcs.

G Postulate

Postulate 10.1 Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

120°

Find the measure of each arc. **b.** \widehat{GEF}

$$mGE = 40 + 80 = 120^{\circ}$$

$$mGF = 300 - 230^{\circ}$$

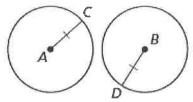
$$= 130^{\circ}$$

$$mGF = 40 + 80 + 110^{\circ} = 230^{\circ}$$

Identify the given arc as a major arc, minor arc, or semicircle. Then find the measure of the arc.

2.
$$\widehat{QRT}$$
 3. \widehat{TQR}

3.
$$\widehat{TOR}$$

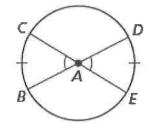

5.
$$\widehat{TS}$$

4.
$$\widehat{QS}$$
 5. \widehat{TS} **6.** \widehat{RST}

= 11000

Theorem 10.3 Congruent Circles Theorem

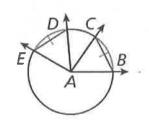
Two circles are congruent circles if and only if they have the same radius.


Proof Ex. 35, p. 544

 $\bigcirc A \cong \bigcirc B$ if and only if $\overline{AC} \cong \overline{BD}$.

Arcs are congruent iff they have the same measure AND they are arcs of the same circle or congruent circles.

Theorem 10.4 Congruent Central Angles Theorem


In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding central angles are congruent.

 $\widehat{BC} \cong \widehat{DE}$ if and only if $\angle BAC \cong \angle DAE$.

Proof Ex. 37, p. 544

*** Congruent Arcs have congruent Chords

Tell whether the red arcs are congruent. Explain why or why not.

a. D E 80° 80° F

they are of the same circle and their central L's are =

RS and FU

Nave same measure

but one of two circles

that aren't = so

they aren't =

they are of = circles
are their central L's
are =

7. A 145°

AB = CD

145° D 8. N

min and pa have same measure, but aron't =

Theorem 10.5 Similar Circles Theorem

All circles are similar.

Proof p. 541; Ex. 33, p. 544

Homework: pg. 542 #3-16, 18-24, 26, 29, 30