10.5 Angle Relationships in Circles

Bellwork Find the indicated measure.

1.
$$m\widehat{BC}$$

Theorem 10.14 Tangent and Intersected Chord Theorem

If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is one-half the measure of its intercepted arc.

3. mEH

50°

$$m \angle 1 = \frac{1}{2} \widehat{mAB}$$
 $m \angle 2 = \frac{1}{2} \widehat{mBCA}$

3. $m\widehat{XY}$

Line m is tangent to the circle. Find the indicated measure.

Find each measure. m∠*EFH*

$\widehat{\mathbf{mGF}}$

Find each measure.

m∠*STU*

m*SR*

Core Concept

Intersecting Lines and Circles

If two nonparallel lines intersect a circle, there are three places where the lines can intersect.

on the circle

inside the circle

outside the circle

Theorem 10.15 Angles Inside the Circle Theorem

If two chords intersect inside a circle, then the measure of each angle is one-half the sum of the measures of the arcs intercepted by the angle and its vertical angle.

$$m\angle 1 = \frac{1}{2}(m\widehat{DC} + m\widehat{AB}),$$

$$m\angle 2 = \frac{1}{2}(m\widehat{AD} + m\widehat{BC})$$

Find the value of the variable.

$$X = \frac{1}{2}(130 + 156)$$

$$= \frac{1}{2}(286)$$

$$= 1430$$

$$102 = \frac{1}{2}(95 + 4)$$

$$204 = 95 + 4$$

$$109 = 4$$

Theorem 10.16 Angles Outside the Circle Theorem

If a tangent and a secant, two tangents, or two secants intersect outside a circle, then the measure of the angle formed is one-half the difference of the measures of the intercepted arcs.

$$m\angle 1 = \frac{1}{2}(m\widehat{BC} - m\widehat{AC})$$

$$m\angle 1 = \frac{1}{2}(m\widehat{BC} - m\widehat{AC})$$
 $m\angle 2 = \frac{1}{2}(m\widehat{PQR} - m\widehat{PR})$ $m\angle 3 = \frac{1}{2}(m\widehat{XY} - m\widehat{WZ})$

$$m \angle 3 = \frac{1}{2} (m\widehat{X}\widehat{Y} - m\widehat{W}\widehat{Z})$$

Find the value of the variable.

$$30 = \frac{1}{2}(a - 44)$$

$$00 = a - 44$$

Find the value of x.

$$X = \frac{1}{2}(178 - 76)$$

 $X = 51$

Find the value of x.

$$25 = \pm (83 - X)$$

 $50 = 83 - X$

$$-\frac{33}{33} = -X$$

In the company logo shown, $\widehat{mFH} = 108^{\circ}$, and $\widehat{mLJ} = 12^{\circ}$. What is $m\angle FKH$?

$$mLK = \frac{1}{2}(108-12)$$

$$= \frac{1}{2}(96)$$

$$= 480$$

Two of the six muscles that control eye movement are attached to the eyeball and intersect behind the eye. If $m\overrightarrow{AEB} = 225^{\circ}$, what is $m\angle ACB$?

$$mLC = \frac{1}{2}(225 - 135)$$

= $\frac{1}{2}(90)$
 $mLC = 450$

VERTEX OF THE ANGLE On a circle	MEASURE OF ANGLE Half the measure of its intercepted arc	DIAGRAMS	
		120°	200°
Inside a circle	Half the sum of the measures of its intercepted arcs	m∠1 = 60°	$m\angle 2 = 100^{\circ}$ $m\angle 1 = \frac{1}{2}(44^{\circ} + 86^{\circ})$ $= 65^{\circ}$
Outside a circle	Half the difference of the measures of its intercepted arcs	202°	2 45" 125
	measures of its	$m \angle 1 = \frac{1}{2}(202^{\circ} - 78^{\circ})$ $= 62^{\circ}$	6

*** On the center of the circle: Angle = Arc

Find \widehat{mYZ} .

$$M LX YV = 180 - (49+67)$$

$$= (040)$$

$$M \widehat{YW} = 2(64) = 128$$

$$M \widehat{YZ} = 128 + 68 = 1960$$
Find MLP

$$m L S = \frac{1}{2} (100) = 50$$

 $-28 = -\overrightarrow{PP}$ 3. An observer watches people riding a Ferris wheel that has 12 equally spaced cars.

Find x.

$$\frac{360}{12} = 30^{\circ}$$

$$X = \frac{1}{2}(120 - 90)$$

 $X = \frac{1}{2}(30) = 150$

180-113=67

 $m\widehat{LR} = 100^{\circ}$

G Core Concept

Circumscribed Angle

A circumscribed angle is an angle whose sides are tangent to a circle.

Theorem

Theorem 10.17 Circumscribed Angle Theorem

The measure of a circumscribed angle is equal to 180° minus the measure of the central angle that intercepts the same arc.

Proof Ex. 38, p. 568

$$m\angle ADB = 180^{\circ} - m\angle ACB$$

* This is because mLA and mLB = 900

Find the value of x.

b.

The northern lights are bright flashes of colored light between 50 and 200 miles above Earth. A flash occurs 150 miles above Earth at point C. What is the measure of \widehat{BD} , the portion of Earth from which the flash is visible? (Earth's radius is approximately 4000 miles.)

8. You are on top of Mount Rainier on a clear day. You are about 2.73 miles above sea level at point *B*. Find \widehat{mCD} which represents the part of Earth that you can see.

$$MLBAD = cos^{-1} \left(\frac{4000}{4002.73} \right) = 2.12$$
 $MLCAD = 2(2.12) = 4.24$

Homework: pg. 566 #4-14, 17-26, 39-40 WS 10.5 Angle Relationships in Circles

Homework by Topic:

Tangent and Intersected Chord Theorem:

#3-6

Angles Inside/Outside the Circle Theorem:

#7-12, 15,16,26,39,40,

Circumscribed Angle Theorem:

#13, 14, 17-24