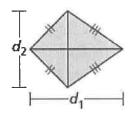
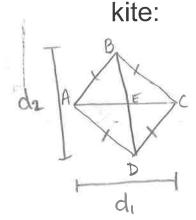

11.3A - Areas of Polygons

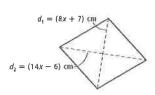
Find the value of x in the right triangle.


Determine if the statement is always, sometimes, or never true.

- 1. Isosceles triangles are similar. Sometimes
- 2. The sum of the lengths of two sides of a triangle is greater than the length of the third side. always
- 3. A square is a rhombus. always
- 4. Opposites sides of a kite are parallel. never
- **5.** The diagonals of a parallelogram bisect each other. $\alpha / \omega \alpha \gamma S$
- 6. An equilateral polygon is regular. Sometimes (rhom bus)


Area of a Rhombus or Kite

The area of a rhombus or kite with diagonals d_1 and d_2 is $\frac{1}{2}d_1d_2$.

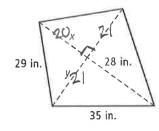

Deriving formulas for area of a rhombus or

$$A_{\triangle ABC} = \frac{1}{2}bh$$

= $\frac{1}{2}(d_1)(\frac{1}{2}d_2)$
= $\frac{1}{4}d_1d_2$

$$\triangle ABC \cong \triangle ADC$$
 by SSS
 $A_{ABCD} = 2(\frac{1}{4}d_1d_2) = \frac{1}{2}d_1d_2$

Find the area of the rhombus.


$$A = \frac{1}{2}(8x +7)(14x-6)$$

$$A = \frac{1}{2}(112x^2 - 48x + 98x - 42)$$

$$A = \frac{1}{2}(112x^2 + 50x - 42)$$

$$A = (56x^2 + 25x - 21) \text{ cm}$$

Find the area of the kite.

$$V = 3(7) = 21 \text{ in } (3-4-5 + riplet)$$

$$21^{2} + X^{2} = 29^{2} \qquad A = \frac{1}{2}(20+28)(21+21)$$

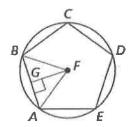
$$441 + X^{2} = 841 \qquad A = \frac{1}{2}(48)(42)$$

$$X = 20 \qquad A = 1008 \text{ in}^{2}$$

Find d_2 of a rhombus in which $d_1 = 3x$ meters and A = 12xy meters².

$$A = \frac{1}{2} d_1 d_2$$
 $12 \times y = \frac{1}{2} (3x) d_2$

Regular Polygon - All angles and sides ≅


The center of a regular polygon is equidistant from the vertices.

The apothem is the distance from the center to a side.

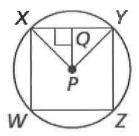
A central angle of a regular polygon has its vertex at the center, and its sides pass through consecutive vertices.

Each central angle measure of a regular *n*-gon is $\frac{360^{\circ}}{n}$.

In the diagram, ABCDE is a regular pentagon inscribed in $\odot F$. Find each angle measure.

a. *m*∠*AFB*

b. *m*∠*AFG*

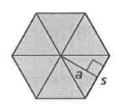

c. m∠GAF

In the diagram, WXYZ is a square inscribed in $\odot P$.

3. Identify the center, a radius, an apothem, and a central angle of the polygon.

center P Apothom Pa

radius PX or PY contral Angue LXPY

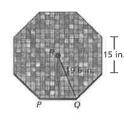

4. Find $m \angle XPY$, $m \angle XPQ$, and $m \angle PXQ$.

$$MLXPY = \frac{360}{4} = 90^{\circ}$$

Area of a Regular Polygon

The area of a regular n-gon with side length s is one-half the product of the apothem a and the perimeter P.

$$A = \frac{1}{2}aP$$
, or $A = \frac{1}{2}a \cdot ns$



A regular nonagon is inscribed in a circle with a radius of 4 units. Find Round to nearest hundred th. the area of the nonagon.

$$\cos 20 = \frac{\alpha}{4} \qquad \sin 20 = \frac{mR}{4}$$

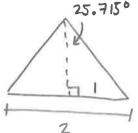
You are decorating the top of a table by covering it with small ceramic tiles. The tabletop is a regular octagon with 15-inch sides and a radius of about 19.6 inches. What is the area you are covering?

$$\cos 22.5 = \frac{\alpha}{19.6}$$

$$\alpha = 19.6 \cos 22.5$$

11.3AB - Areas of Polygons.notebook

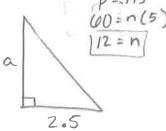
April 02, 2019


A= 14.5 ft3

Find the area of regular heptagon with side length 2 ft to the nearest tenth.

$$A = \frac{1}{2}$$
 ans

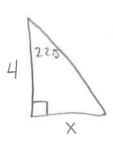
$$MLC = \frac{360}{7} = 51.43$$


$$A = \frac{1}{\tan 25.715}$$
 $A = 7$
 $S = 2$

side

Find the area of a regular dodecaysh with side with per invetor of length 5 cm to the nearest tenth.

$$A = \frac{1}{2}$$
 ans $MLC = \frac{360}{50} = 30$
 $a = \frac{2.5}{tan15}$ $Ha : 15°$
 $n = 12$ $tan : 15 = 2.5$
 $a = \frac{5}{5}$

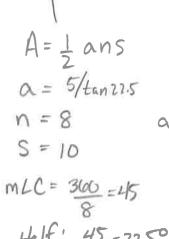


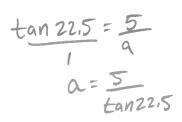
Find the area of a regular octagon with a side length of 4 cm and central

$$n = 8$$

$$360 = 45 \rightarrow 45n = 360$$

Regular Polygon Generator

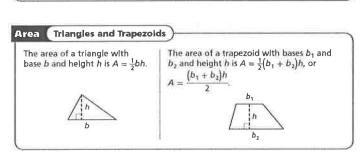



Connecting Area of a Regular Polygon to the Area of a Circle:

• Exit Ticket: Find the area of a stop sign when the side length is 10 inches.

Homework:

pg. 614 #4-12, 15-24



11.3B - Area of Polygons and Composite Figures

Area Parallelogram

The area of a parallelogram with base b and height h is A = bh.

Find the base of the triangle, in which
$$A = (15x^2)$$
 cm² and height = $10x$ cm
$$A = \frac{1}{2}bh$$

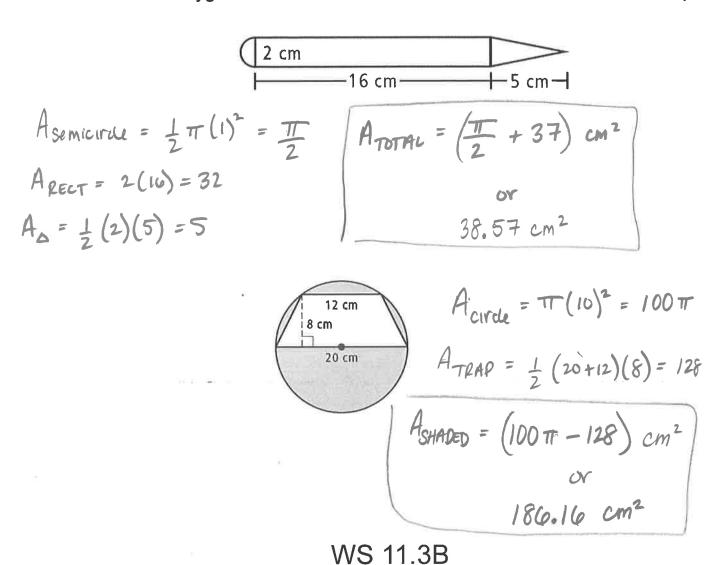
$$15x^2 = \frac{1}{2}(b)(10x)$$

$$15x^2 = b(5x)$$

Find b_2 of the trapezoid, in which $A = 231 \text{ mm}^2$.

$$A = \frac{1}{2}(b_1 + b_2)h$$

$$231 = \frac{1}{2}(23 + b_2)(11)$$


$$402 = (23 + b_2)(11)$$

$$42 = 23 + b_2$$

$$19 = b_2$$

A <u>composite figure</u> is made up of simple shapes, such as triangles, rectangles, trapezoids, and circles.

Find the shaded area. Leave your answer in terms of π and round to the nearest hundredth. $A_{\text{Semicircle}} = \frac{1}{2}\pi(10)^2 = \frac{100\pi}{2} = 50\pi$ $A_{\text{TRAP}} = \frac{1}{2}(20 + 32)(14) = \frac{1}{2}(52)(14) = 364$ $A_{\text{TRAP}} = 50\pi + 364 \approx 521.08 \text{ mm}^2$ $A_{\text{TRAP}} = \frac{1}{2}(18)(26) = 234$ $A_{\text{TRAP}} = \frac{1}{2}(18)(26) = 234$

