2.6 - Geometric Proof

Determine whether each statement is true or false. If false, give a counterexample.

- **1.** It two angles are complementary, then they are not congruent.
- **2.** If two angles are congruent to the same angle, then they are congruent to each other.
- 3. Supplementary angles are congruent.

Sep 20-6:06 PM

A theorem is any statement that you can prove.

Once you have proven a theorem, you can use it as a reason in later proofs.

A **postulate** is a statement we accept as true without proof.

<u>Linear Pair Postulate:</u> If two angles form a linear pair, then they are supplementary

Postulate & Theorem

Write a two-column proof to prove the Right Angles Congruence Theorem.

Given ∠1 and ∠2 are right angles.

Prove $\angle 1 \cong \angle 2$

Right angle congruence Theorem: All right angles are congruent

Theorem

Given: $\angle 1$ and $\angle 3$ are **Vertical Angles**

* See Next Page

Prove: $\angle 1 \cong \angle 3$

Theorem 2.6 Vertical Angles Congruence Theorem

Vertical angles are congruent.

Proof Example 3, p. 108

Statement

LI and L3 are vertical L'S LI and L2 form linear pair L2 and L3 form linear pair

L1 and L2 are supplementary L2 and L3 are supplementary

mL1 + mL2 = 180mL2 + mL3 = 180

mL1 + mL2 = mL2 + mL3-mL2 - mL2

m L 1 = m L 3

LI = L3

Reason

Given

> Def. of Linear Pair

> Linear Pair Postulate

> Def. of supplementary

Transitive POE

Subtraction POE

Simplify

Def. of \cong

Find the value of x.

$$3x+1 = 148$$
 -1 -1
 $3x = 147$
 3

Example 4

Find the value of w.

$$5W + 3 = 98$$
 $-3 - 3$
 $5W = 95$
 5

Homework:

W\$ 2.6A - Geometric Proof

WS Justifications and WS Making Conclusions

Sep 17-12:31 PM

2.6B - More Geometric Proof

CLRI -

Bellwork

- 1. " If it is July, then it is summer in the U.S. "
 - a. Write the Converse, Inverse, and Contrapositive.
 - b. Which one is true?

Contrapositive

Which equation models the pattern in the table above?

A.
$$a_n = 5n + 2$$
 c. $a_n = n + 5$

c.
$$a_n = n + 5$$

B.
$$a_n = \frac{1}{3}n + 2$$

B.
$$a_n = \frac{1}{3}n + 2$$
 B. $a_n = 2n + 3$

1) converse: If summer in US, then July.

Inverse : If not July, then not summer in US.

Contrapositive: If not summer in US, then not July. ~9 -> ~P

> Use the given two-column proof to write a flowchart proof that proves that two angles supplementary to the same angle are congruent.

Given ∠1 and ∠2 are supplementary.

∠3 and ∠2 are supplementary.

Prove $\angle 1 \cong \angle 3$

Two-Column Proof

STATEMENTS	REASONS
 ∠1 and ∠2 are supplementary. ∠3 and ∠2 are supplementary. 	1. Given
2. $m \angle 1 + m \angle 2 = 180^{\circ}$, $m \angle 3 + m \angle 2 = 180^{\circ}$	2. Definition of supplementary angles
3. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	3. Transitive Property of Equality
4. <i>m</i> ∠1 = <i>m</i> ∠3	4. Subtraction Property of Equality
5. ∠1 ≅ ∠3	5. Definition of congruent angles

Theorem 2.4 Congruent Supplements Theorem

If two angles are supplementary to the same angle (or to congruent angles), then they are congruent.

If $\angle 1$ and $\angle 2$ are supplementary and $\angle 3$ and $\angle 2$ are supplementary, then $\angle 1 \cong \angle 3$.

Proof Example 2, p. 107 (case 1); Ex. 20, p. 113 (case 2)

Theorem 2.5 Congruent Complements Theorem

If two angles are complementary to the same angle (or to congruent angles), then they are congruent.

If $\angle 4$ and $\angle 5$ are complementary and $\angle 6$ and $\angle 5$ are complementary, then $\angle 4 \cong \angle 6$.

Proof Ex. 19, p. 112 (case 1); Ex. 22, p. 113 (case 2)

Theorem

Given ∠1 ≅ ∠4

Prove $\angle 2 \cong \angle 3$

Statement 1 = 14

14=L3

L1= L3

L1= L2

L2 = L3

Reason

Given

Vert. L's Thm

Transitive POC

Vert. L'S Thm

Transitive POC

Example 5

Given AB = DE, BC = CD

Prove $\overline{AC} \simeq \overline{CE}$

STATEMENTS

- 1. AB = DE, BC = CD
- 2. AB + BC = BC + DE
- 3. AB+ BC = CD + DE
- 4. AB + BC = AC, CD + DE = CE
- 5. AC = CE
- **6.** $\overline{AC} \cong \overline{CE}$

REASONS

- 1. Given
- 2. Addition Property of Equality
- 3. Substitution Property of Equality
- 4. Segment Addition Protriate
- 5. Substitution Property of Equality
- 6. Def. of =

Given ∠1 is a right angle.

Prove ∠2 is a right angle.

Statement 1 is a right L LI and L2 Form Linear Pair Def. of Linear Pair Ll and LZ are Supp. ML1 + ML2 = 1800 | Def. of Supp. ML1 = 900 90 + m L 2 = 180 -90 MLZ = 90

Reason Giun | Linear Pair Postblafe Def. of right L Substitution Subfraction POE Simplify

Monitoring Progress 8-

L2 is a right L

Def. of Right L

Homework:

pg. 111 # 3-5, 8, 12

(17-24 look like good proofs)