Oct 10-6:12 PM

3.2 Parallel Lines and Transversals

Bellwork: Solve each system of equations.

$$\begin{cases}
3x + 2y = 4 \\
-12x + 4y = -16
\end{cases}$$

$$\begin{cases}
3x + 2y = 4 \\
4x - 2y = -18
\end{cases}$$

$$\begin{cases}
4x - 2y = -18 \\
7x = -14
\end{cases}$$

$$\begin{cases}
-12x + 4y = -16 \\
-12x + 4y = -16
\end{cases}$$

$$\begin{cases}
6x - 5(8) = -16 \\
6x - 40 = -16
\end{cases}$$

$$\begin{cases}
6x - 2y = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

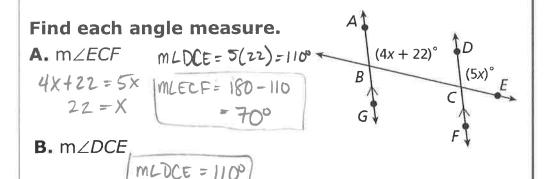
$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$


$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

$$\begin{cases}
7x = -14 \\
7x = -14
\end{cases}$$

4

If two parallel lines are cut by a transversal, then...

Corresponding Angles are congruent (Corresponding Angles Postulate/ Theorem)

Oct 10-5:37 PM

If two parallel lines are cut by a transversal, then...

Alternate Interior Angles Are Congruent (Alternate Interior Angles Theorem)

Alternate Exterior Angles Are Congruent (Alternate Exterior Angles Theorem)

Consecutive Interior Angles Are Supplementary (Consecutive Interior Angles Theorem)

G Theorems

Theorem 3.1 Corresponding Angles Theorem

If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.

Examples In the diagram at the left, $\angle 2 \cong \angle 6$ and $\angle 3 \cong \angle 7$.

Proof Ex. 36, p. 180

If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.

Examples In the diagram at the left, $\angle 3 \cong \angle 6$ and $\angle 4 \cong \angle 5$.

Proof Example 4, p. 134

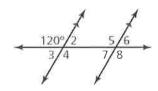
Theorem 3.3 Alternate Exterior Angles Theorem

If two parallel lines are cut by a transversal, then the pairs of alternate exterior

Examples In the diagram at the left, $\angle 1 \cong \angle 8$ and $\angle 2 \cong \angle 7$.

Proof Ex. 15, p. 136

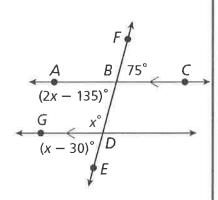
Theorem 3.4 Consecutive Interior Angles Theorem

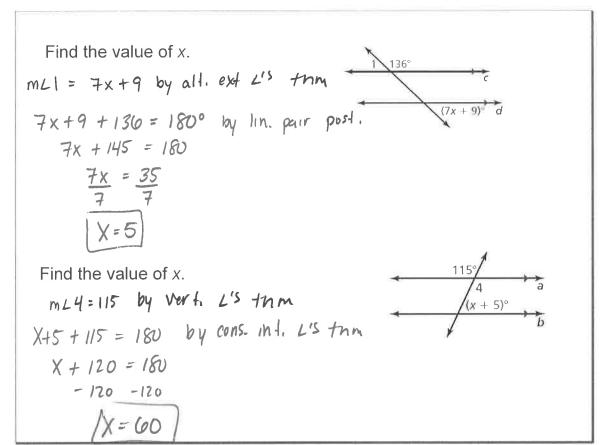

If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.

Examples In the diagram at the left, $\angle 3$ and $\angle 5$ are supplementary, and ∠4 and ∠6 are supplementary.

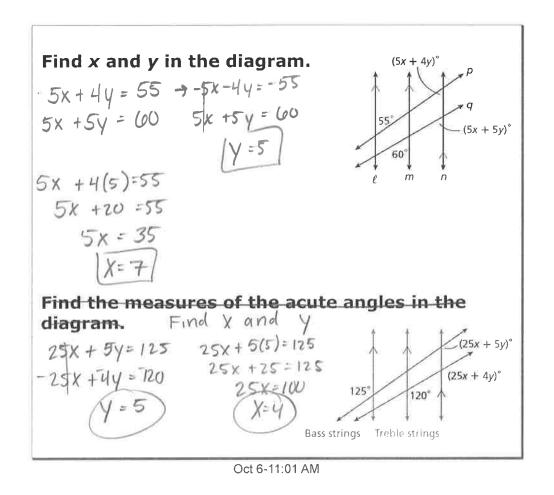
Proof Ex. 16, p. 136

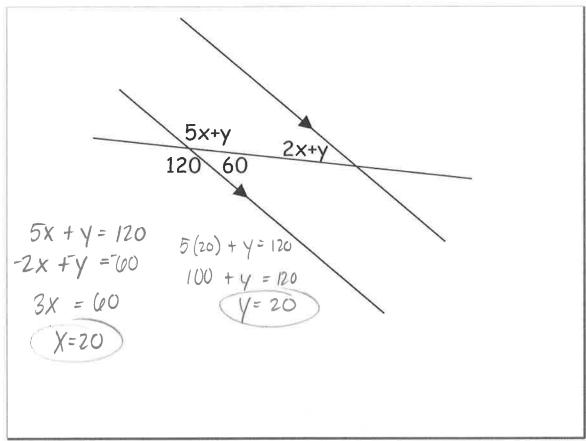
Theorems

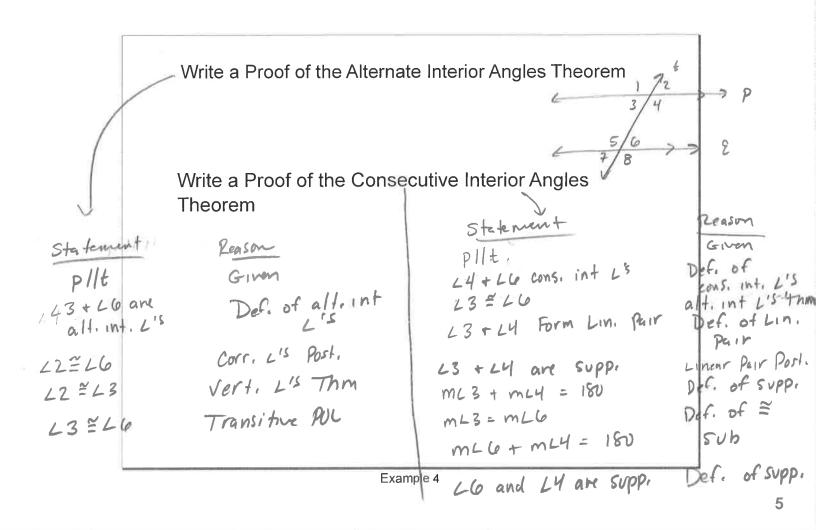

The measures of three of the numbered angles are 120°. Identify the angles. Explain your reasoning.



Find each angle measure.


$$2x-135 = 75$$
A. m/**EDG** $2x = 2.10$


B. m/BDG



Example 2

Oct 10-12:43 PM

Homework:

WS 3.2B - Parallel Lines and Transversals

Oct 10-12:41 PM