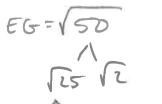
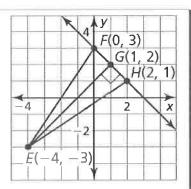

<u>distance from a point to a line</u> - the length of the perpendicular segment from the point to the line.

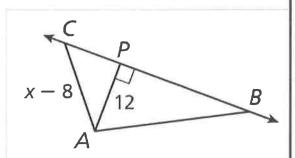
(the shortest distance from a point to a line is the perpendicular segment)


Oct 17-8:30 AM



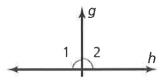
1. Find the distance from point E to \overrightarrow{FH} .

$$EG = \sqrt{(-5)^2 + (-5)^2}$$



Monitoring Progress 1

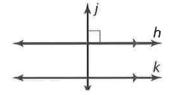
A. Name the shortest segment from point A to BC.


B. Write and solve an inequality for x.

$$\begin{array}{|c|c|c|c|c|}
X - 8 > 12 \\
\hline
> 20
\end{array}$$

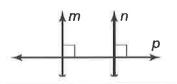
Theorem 3.10 Linear Pair Perpendicular Theorem

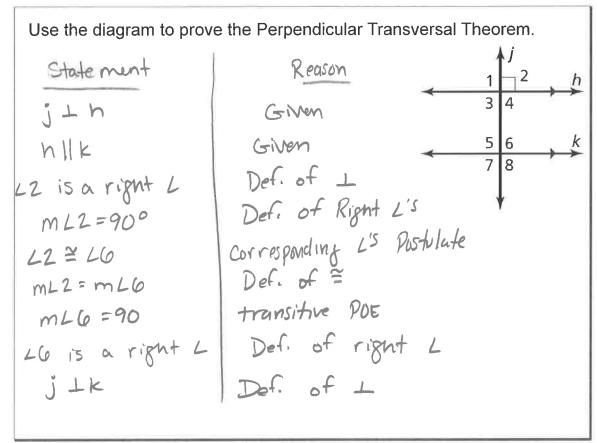
If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.


If $\angle 1 \cong \angle 2$, then $g \perp h$.

Theorem 3.11 Perpendicular Transversal Theorem

In a plane, if a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other line.


If $h \parallel k$ and $j \perp h$, then $j \perp k$.


Theorem 3.12 Lines Perpendicular to a Transversal Theorem

In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.

If $m \perp p$ and $n \perp p$, then $m \parallel n$.

Theorems

The photo shows the layout of a neighborhood. Determine which lines, if any, must be parallel in the diagram. Explain your reasoning.

3/1t, p/19

Both are true by "lines I to transversal thm"

Example 3

Use the lines marked in the photo.

3. Is $b \parallel a$? Explain your reasoning.

4. Is $b \perp c$? Explain your reasoning.

The <u>perpendicular bisector</u> of a segment is a line perpendicular to a segment at the segment's midpoint.

Oct 17-8:37 AM

Homework: pg. 152 #3,4, 11,12,16-23, 31