3.5A - Partitioning a Directed Line Segment

Bellwork

Graph the line in a coordinate plane.

1.
$$y = 6x$$

2.
$$v = 4x + 2$$

3.
$$y = x - 3$$

4.
$$y = x + 2$$

B(6, 8)

5.
$$y = \frac{2}{3}x - 2$$

6.
$$y = -\frac{4}{3}x + 3$$

Warm Up

Find the coordinates of point *P* along the directed line segment AB so that the ratio of AP to PB is 3 to 2.

- Ratio 3 to 2 means "3 parts to 2 parts", so there are a total of 5 parts.

$$X_p = X_A + \frac{3}{5} \left(X_B - X_A \right)$$

$$X_{p} = 3 + \frac{3}{5}(6-3)$$

$$X_p = 3 + \frac{9}{5}$$

$$X_{p} = X_{A} + \frac{3}{5}(X_{B} - X_{A})$$
 $Y_{p} = Y_{A} + \frac{3}{5}(Y_{B} - Y_{A})$

$$y_p = 2 + \frac{3}{5}(8-2)$$

$$y_p = \frac{10}{5} + \frac{18}{5} = \frac{28}{5}$$

Point of Division Formula (Finding a point that is not in the exact middle of a segment).

$$x = x1 + t(x2 - x1)$$

$$y = y1 + t (y2 - y1)$$

Oct 19-10:53 AM

Find the point that is 2/3 of the distance from R to S.

R(3, 2) and S(-3, -1)

Find the point that is 1/3 of the distance from R to S.

R(-4, 5) and S(2, -1)

$$X_{p} = X_{R} + t(X_{s} - X_{R}) \qquad Y_{p} = Y_{R} + t(Y_{s} - Y_{R})$$

$$X_{p} = -4 + \frac{1}{3}(2+4) \qquad Y_{p} = 5 + \frac{1}{3}(-1-5)$$

$$X_{p} = -4 + 2 \qquad Y_{p} = 5 + (-2)$$

$$X_{p} = -2 \qquad Y_{p} = 3$$

$$(-2.3)$$

Homework:

pg. 160 #3-6, 31 and WS 3.5A

Oct 19-11:00 AM