4.2 - Reflections

Reflect point P. State the coordinates of P'.

- **1.** P(-5, 3); reflection in y-axis
- P, (513)
- 2. P(-4, -3); reflection in y-axis P(4, -3)
- **3.** P(-1, 1); reflection in *x*-axis
- P'(-1,-1)
- **4.** *P*(**4**, **6**); reflection in *x*-axis
- P'(4,-6)

Warm Up 1-3

Reflections

A reflection is a transformation that uses a line like a mirror to reflect a figure. The mirror line is called the **line of reflection**.

A reflection in a line m maps every point P in the plane to a point P', so that for each point one of the following properties is true.

- If P is on m, then P = P'.
- point P not on m

point P on m

Postulate

Postulate 4.2 Reflection Postulate

A reflection is a rigid motion.

Find the image of $\triangle ABC$ with vertices A(1, 3), B(5, 2), and C(2, 1) after the reflection described.

1. In the line x = 32. In the line y = 1A'(5,3) B'(1,2) C'(4,1)

A'(1,-1) B'(5,0) C'(2,1)

1. In the line
$$x = 3$$

2. In the line
$$y = 1$$

3. In the line
$$x = 4$$

4. In the line
$$x = -3$$

3. In the line
$$x = 4$$
A' $(7,3)$ B' $(3,2)$ C' $(6,1)$
A' $(-7,3)$ B' $(-11,2)$ C' $(-7,3)$ B' $(-11,2)$ C' $(-7,3)$

5. In the line
$$y = 2$$

6. In the line
$$v = -1$$

5. In the line
$$y = 2$$
6. In the line $y = -1$
A (1, 1) B (5, 2) C'(2, 3)
A (1, -5) B'(5, -4) C'(2, -3)

Example 1

Coordinate Rules for Reflections

In the x-axis: $(a, b) \rightarrow (a, -b)$

In the y-axis: $(a, b) \longrightarrow (-a, b)$

In the line y = x: $(a, b) \rightarrow (b, a)$

In the line y = -x: (a, b) \rightarrow (-b, -a)

 \overline{FG} has endpoints F(-1, 2) and G(1, 2). Find its image after a reflection:

- 1. in the line y = x. F'(2,-1) G'(2,1)
- 2. in the line y = -x F'(-2, 1) G'(-2, -1)

Example 2

The vertices of $\triangle JKL$ are J(1, 3), K(-2, 4), and L(3, 1). Find the image after a reflection:

- 1. in the x-axis. J'(1,-3) K'(-2,-4) L'(3,-1)
- 2. in the y-axis. J'(-1,3)K'(2,4)L'(-3,1)
- 3. in the line y = x. J'(3, 1) K'(4, -2) L'(1, 3)
- 4. in the line y = -x. $\int_{-3}^{3} (-3 1) |C'(-4, 2)| L'(-1, -3)$

A **glide reflection** is a transformation involving a translation followed by a reflection in which every point P is mapped to a point P' by the following steps:

- 1. Translation maps P to P'
- 2. A reflection in line k parallel to the direction of the translation maps P' to P".

Nov 7-6:45 AM

Find the image of $\triangle ABC$ with vertices A(3, 2), B(6, 3), and C(7, 1) after the glide reflection.

Translation:
$$(x, y) \rightarrow (x - 12, y)$$

Reflection: in the x-axis

$$A'(-9,2) \longrightarrow A''(-9,-2)$$
 $B'(-6,3) \longrightarrow B''(-6,-3)$
 $C'(-5,1) \longrightarrow C''(-5,-1)$

Translation: $(x, y) \rightarrow (x, y - 4)$

Reflection: in the y-axis

$$A'(3,-2) \rightarrow A''(-3,-2)$$
 $B'(6,-1) \rightarrow B''(-6,-1)$
 $C'(7,-3) \rightarrow C''(-7,-3)$

> Homework: pg. 186 #2-20 Evens, 21-25

Finding the shortest path...

Two buildings located at A and B are to be connected to the same point on the water line. Where should they connect so that the least amount of pipe will be used?

Nov 7-4:24 PM

