

Warm Up 1-3

<u>Rotation</u> - a transformation that turns a figure around a fixed point, called the center of rotation.

Postulate 4.3 Rotation Postulate

A rotation is a rigid motion.

Unless otherwise stated, all rotations in this book are counterclockwise.

Core Concept

Work with a partner.

a. The point (x, y) is rotated 90° counterclockwise about the origin. Write a rule to determine the coordinates of the image of (x, y).

b. Use the rule you wrote in part (a) to rotate $\triangle ABC$ 90° counterclockwise about the origin. What are the coordinates of the vertices of the image, $\triangle A'B'C'$?

$$A'(-3,0)$$
 $B'(-5,4)$
 $C'(3,3)$

Exploration 2

Work with a partner.

a. The point (x, y) is rotated 180° counterclockwise about the origin. Write a rule to determine the coordinates of the image of (x, y). Explain how you found the rule.

b. Use the rule you wrote in part (a) to rotate △ABC (from Exploration 2) 180° counterclockwise about the origin. What are the coordinates of the vertices of the image,

 $\triangle A'B'C'$? A! (0,-3)B' (-4,-5)

Coordinate Rules for Rotations about the Origin

When a point (a, b) is rotated counterclockwise about the origin, the following are true.

- For a rotation of 90°, $(a, b) \rightarrow (-b, a).$
- For a rotation of 180°, $(a, b) \rightarrow (-a, -b).$
- For a rotation of 270°, $(a, b) \rightarrow (b, -a)$.

(-

Core Concept

Rotate point P counterclockwise about the origin by the given angle. State the coordinates of P'.

1.
$$P(4, 2); 90^{\circ} \rightarrow (-b, a)$$

1.
$$P(4, 2)$$
; $90^{\circ} \Rightarrow (-b, a)$ $P'(-2, 4)$
2. $P(3, 0)$; $90^{\circ} \Rightarrow (-b, a)$ $P'(0, 3)$

3.
$$P(6, 0)$$
; $180^{\circ} \Rightarrow (-a, -b) P'(-b, 0)$

4.
$$P(2, 6)$$
; $180^{\circ} \rightarrow (-a, -b)$ $P'(-2, -b)$

$$P'(-2,-6)$$

5.
$$P(-2, 0)$$
; $270^{\circ} \rightarrow (b, -a) P'(0, 2)$

6.
$$P(4, 0)$$
; $270^{\circ} \rightarrow (b_1 - a) P'(0, -4)$

Compositions of Transformations

1. Given \overline{RS} with endpoints R(1, -3) and S(2, -6), find its image after the composition. $R'(-1, -3) \Rightarrow (-b, \alpha) \Rightarrow R''(3, -1)$ Reflection: in the y-axis

Rotation: 90° about the origin $S'(-2, -b) \Rightarrow (-b, \alpha) \Rightarrow S''(b, -2)$

Rotation: 90° about the origin

2. Given $\frac{\bullet}{RS}$ from Example 3. Perform the rotation first, followed by the reflection. Does the order of the transformations matter? Explain.

10 R(1,3) -> (-b,a) -> (3,1) Per R" (-3,1) Rot 90° S(2,-6) = (-6,a) s'(6,2) | S" (-6,2) Normally, it

3. WHAT IF? In Example 3, RS is reflected in the x-axis and rotated 180° about the origin. Graph \overline{RS} and its image after the composition.

$$R(1,-3)$$
 $(-1,-3)$ $(-3,-6)$ $(-3,-6)$ $(-3,-6)$ $(-3,-6)$ $(-3,-6)$ $(-3,-6)$ $(-3,-6)$ $(-3,-6)$ $(-3,-6)$

4. Given \overline{AB} with endpoints A(-4, 4) and B(-1, 7), find its image after the composition.

Translation: $(x, y) \rightarrow (x - 2, y - 1)$

Rotation: 90° about the origin
$$A'(-6,3) \rightarrow (-6,a) A''(-3,-6)$$

$$B'(-3,6) \rightarrow (-6,a) B''(-6,-3)$$

5. Given $\triangle TUV$ with vertices T(1, 2), U(3, 5), and V(6, 3), find its image 4after the composition.

Rotation: 180° about the origin

Reflection: in the *x*-axis

A figure in the plane has **rotational symmetry** when the figure can be mapped onto itself by a rotation of 180 degrees or less about the center of the figure. This point is called the **center of symmetry**.

Order - The number of times you rotate it to get it back to the original

360/Order = Angle of Rotational Symmetry

Nov 2-2:02 PM

Homework

pg. 194 #7, 8 -16 Evens, 17-24, 32, 33, 36, 39

Nov 2-1:57 PM