4.6 Similarity and Transformations

Solve. Round to the nearest tenth, if necessary

1.
$$\frac{n}{17}$$
 $\frac{14}{25}$ $238 = 25$ $9.5 = 1$

3.
$$\frac{x}{5} = \frac{31}{35}$$

 $36 \times = 156$

$$\frac{x}{5} = \frac{51}{35}$$

35x = 155
 $x = 4.4$

2.
$$\frac{w}{12} = \frac{3}{2}$$
 $\frac{36 = 2w}{18 = w}$

4.
$$\frac{13}{2} = \frac{y}{19}$$

$$247 = 2y$$

$$123.5 = y$$

Since a dilation preserves shape but not size, then it is considered a *non-rigid motion*.

A **similarity transformation** is a dilation or a composition of rigid motions and dilations.

Similar figures have the same shape but not the same size. Two geometric figures are similar figures iff there is a similarity transformation that maps one of the figures onto the other. 1. Graph $\triangle ABC$ with vertices A(-4, 1), B(-2, 2), and C(-2, 1) and its image after the similarity transformation.

Translation: $(x, y) \rightarrow (x + 5, y + 1) \stackrel{A'(1, 2)}{B'(3, 3)}$ Dilation: $(x, y) \rightarrow (2x, 2y)$

2. Graph \overline{CD} with endpoints C(-2, 2) and D(2, 2) and its image after the similarity transformation.

Rotation: 90° about the origin $(a,b) \rightarrow (-b,a)$ C'(-2,-2)Dilation: $(x,y) \rightarrow \left(\frac{1}{2}x,\frac{1}{2}y\right) \rightarrow \frac{1}{2}(-2,-2) \frac{1}{2}(-2,2)$

3. Graph $\triangle FGH$ with vertices F(1, 2), G(4, 4), and H(2, 0) and its image after the similarity transformation.

Reflection: in the x-axis $-(a_1-b_1)$

Dilation: $(x, y) \to (1.5x, 1.5y)$

H' (2,0)

Describe a similarity transformation that maps trapezoid PQRS to trapezoid WXYZ.

#Treflection over the Y-axis

#2 Dilation of 3

$$\begin{pmatrix} 6 & -3 \\ 2 & -1 \end{pmatrix}$$

4. Describe a similarity transformation that maps quadrilateral DEFG to quadrilateral STUV.

$$(-1,-4)$$
 $(-\frac{1}{2},-2)$ $\sqrt{2}$

pg. 219 # 3-12, 15-17, 21