5.1 - Angles of Triangles

Bellwork

Find the value of x that makes $m \parallel n$.

Cumulative Warm Up

Classifying Triangles by Sides

Scalene Triangle

Isosceles Triangle

Equilateral Triangle

no congruent sides

at least 2 congruent sides

3 congruent sides

Classifying Triangles by Angles

Acute Triangle

3 acute angles

Right Triangle

1 right angle

Obtuse Triangle

1 obtuse angle

Equiangular Triangle

3 congruent angles

Classify \triangle *EHF* by its side lengths.

Classify \triangle ACD by its side lengths.

Nov 16-4:56 PM

Find the side lengths of \triangle *JKL*.

$$4x - 10/7 = 21x + 6.3$$

$$-2x + 10/7 = 21x + 10.7$$

$$2x = 17$$

$$2 = 17$$

$$2 = 17$$

$$2 = 8.5$$

Find the side lengths of equilateral $\triangle FGH$

Nov 16-4:56 PM

Classify △OPQ by its sides. Then determine whether it is a right triangle.

slope of
$$0a = \frac{3}{6} = \frac{1}{2}$$

Scalene D, Yes it is a right D

2. $\triangle ABC$ has vertices A(0, 0), B(3, 3), and C(-3, 3). Classify the triangle by its sides. Then determine whether it is a right triangle.

AB:
$$3^2 + 3^2 = C^2$$
 AC: $3^2 + 3^2 = C^2$ BC = $\sqrt{(-6)^2 + (6)^2}$ Slope of $16 = \frac{3}{3} = 1$
 $9 + 9 = C^2$ $\sqrt{18} = \sqrt{C^2}$ Slope of $16 = \frac{9}{-6} = 0$
 $\sqrt{18} = \sqrt{C^2}$ Scalan Δ Slope of $16 = \frac{3}{3} = -1$

Example 2

Scalen
$$\triangle$$
 Slope of $AC = \frac{3}{3} = -1$

Yes, it is a right D

Theorem 5.1 **Triangle Sum Theorem**

The sum of the measures of the interior angles of a triangle is 180°.

Proof p. 234; Ex. 53, p. 238

 $m\angle A + m\angle B + m\angle C = 180^{\circ}$

Proof:

Theorem 1

Not Needed in Notes...

The <u>interior</u> is the set of all points inside the figure.

The **exterior** is the set of all points outside the figure.

Nov 16-4:58 PM

An **interior angle** is formed by two sides of a triangle.

An <u>exterior angle</u> is formed by one side of the triangle and extension of an adjacent side.

Nov 16-4:59 PM

Theorem 5.2 Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two nonadjacent interior angles.

Proof Ex. 42, p. 237

Theorem 2

Corollary 5.1 Corollary to the Triangle Sum Theorem

The acute angles of a right triangle are complementary.

Proof Ex. 41, p. 237

Corrolary

The red triangle is a right triangle. The measure of one acute angle in the triangle is twice the measure of the other. Find the measure of each acute angle.

$$X + 2x = 90$$

 $3x = 90$
 $X = 30$ and $2x = 60$

Monitoring Progress 3-4

Homework

pg. 236 #3-5, 11-14, 16-20, 23, 24, 49-52