

 $\frac{X}{3} = \frac{115}{5}$ $\frac{X}{3} = \frac{23}{1}$ X = 69

For example, P and Q are consecutive vertices.

To name a polygon, write the vertices in consecutive order. For example, you can name polygon *PQRS* as *QRSP* or *SRQP*, but **not** as *PRQS*.

In a congruence statement, pay attention to **the order of the vertices;** it indicates the corresponding parts.

Warm Up

Geometric figures are congruent if they are the same size and shape.

<u>Corresponding angles</u> and <u>corresponding sides</u>: In the same position on a different figure of the same shape.

Corresponding parts of congruent triangles are congruent. (CPCTC)

DIAGRAM	CORRESPONDING ANGLES	CORRESPONDING SIDES
$A \longrightarrow B \\ C \longrightarrow F$ $\triangle ABC \cong \triangle DEF$	∠A ≅ ∠D ∠B ≅ ∠E ∠C ≅ ∠F	$\overline{AB} \cong \overline{DE}$ $\overline{BC} \cong \overline{EF}$ $\overline{AC} \cong \overline{DF}$
Polygon PORS ≅ polygon WXYZ	$\angle P \cong \angle W$ $\angle Q \cong \angle X$ $\angle R \cong \angle Y$ $\angle S \cong \angle Z$	$ \overline{PQ} \cong \overline{WX} $ $ \overline{QR} \cong \overline{XY} $ $ \overline{RS} \cong \overline{YZ} $ $ \overline{PS} \cong \overline{WZ} $

Helpful Hint

When you write a statement such as $\triangle ABC \cong \triangle DEF$, you are also stating which parts are congruent.

Given: $\triangle PQR \cong \triangle STW$

Identify all pairs of corresponding congruent parts.

Given: $\triangle ABC \cong \triangle DEF$

Find the value of x.

Given: $\triangle ABC \cong \triangle DEF$

Find $m \angle F$.

Write a congruence statement for the triangles. Identify all pairs of congruent corresponding parts.

2x-2=6

MLF = MLC = 370

Nov 16-5:56 PM

In the diagram, $DEFG \cong SPQR$.

a. Find the value of x. QR = GF 2x-4 = 12

102° 84° 68° 12 ft

b. Find the value of *y*.

$$64 + x = 68$$

Theorem 5.3 Properties of Triangle Congruence

Triangle congruence is reflexive, symmetric, and transitive.

Reflexive For any triangle $\triangle ABC$, $\triangle ABC \cong \triangle ABC$.

Symmetric If $\triangle ABC \cong \triangle DEF$, then $\triangle DEF \cong \triangle ABC$.

Transitive If $\triangle ABC \cong \triangle DEF$ and $\triangle DEF \cong \triangle JKL$, then $\triangle ABC \cong \triangle JKL$.

Proof BigIdeasMath.com

Theorem

Theorem 5.4 Third Angles Theorem

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

A

В

Proof Ex. 19, p. 244

If $\angle A \cong \angle D$ and $\angle B \cong \angle E$, then $\angle C \cong \angle F$.

Example 4

Given: $\angle YWX$ and $\angle YWZ$ are right angles.

 \overline{YW} bisects $\angle XYZ$. W is the midpoint of \overline{XZ} . $\overline{XY} \cong \overline{YZ}$.

Prove: $\Delta XYW \cong \Delta ZYW$ LYWX and LYWZ are right L'S Right L ≥ Thm LYWX = LYWZ Gwen YW bisects LXYZ Def. of bisect LXYW = LZYW Third L'S Thm LX E LZ W is midpoint of XZ Given Def. of malpt XW = WZ Gmen XY = YZ

DXYW Z DZYW

Def. of = D's

Reflexive POC Nov 16-6:00 PM

2 - 5.2 Congruent Polygons.notebook

Nov 16-6:01 PM

Use the information in the figure to prove that $\triangle ACD \cong \triangle CAB$.

S

AD = BC, $\triangle AB \cong CD$ AC = AC

LDAC = LBCA

LACD = LCAB

LD = LB

ACD = ACAB

Def. of = \triangle 's

Example 5

Homework: pg. 243 #3-10, 13,14, 24 Finish 5.2 Proof WS