5.3 Proving Triangles Congruent by SAS

G Theorem

Theorem 5.5 Side-Angle-Side (SAS) Congruence Theorem

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

If
$$\overline{AB} \cong \overline{DE}$$
, $\angle A \cong \angle D$, and $\overline{AC} \cong \overline{DF}$, then $\triangle ABC \cong \triangle DEF$.

 $C \xrightarrow{B} A$

Proof p. 246

Essential Question

Write a proof.

Given $\overline{BC} \cong \overline{DA}$, $\overline{BC} \parallel \overline{AD}$

Prove △ABC ≅ △CDA

BC = DA

LBCA = LCAD

AC = AC

ABC = ACDA

2

Given

Given

Alt. Int L's Thm

Reflexive POC

SAS

OF bisets LRQS
LRQP=LSQP

QP=QS

QP=QP

ARQP=ASQP

Given: $Q\overline{P}$ bisects $\angle RQS$. $\overline{QR} \cong \overline{QS}$ Prove: $\triangle RQP \cong \triangle SQP$ B

Given

Pol. of Bisects

PN bisects mo

PN \perp PN \perp NP \perp

Bef. of bisect Given Def. of ⊥ Def. of ⊥ Right ∠ ≅ Thm Reflexive POC SAS

Nov 6-10:04 AM

In the diagram, \overline{QS} and \overline{RP} pass through the center M of the circle. What can you conclude about $\triangle MRS$ and $\triangle MPQ$?

LSMR and LPMQ and since SM, MQ, MP, and MR are all radii, they are = This gives you enough to prove the Δ 'S \cong by SAS

In the diagram, *ABCD* is a square with four congruent sides and four right angles. R, S, T, and U are the midpoints of the sides of *ABCD*. Also, $\overline{RT} \perp \overline{SU}$ and $\overline{SV} \cong \overline{VU}$.

1. Prove that $\triangle SVR \cong \triangle UVR$.

PT I SU

LSVR + LUVR an

right L'S

LSVR = LUVR

SV = VU

VR = VP

DSVR = DUVR

E Given Def. of ⊥ Right L = Thm Given Reflexive POC SAS

Monitoring Progress 1-2

Homework pg. 249 #3-18