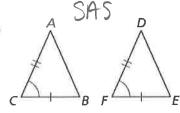
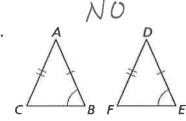
5.6 ASA and AAS Triangle Congruence Bellwork:

Determine which triangle congruence theorem, if any, can be used to prove the triangles are congruent.

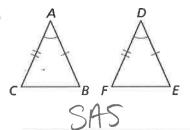
1.



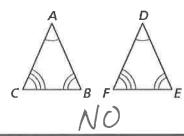
2.



3.



4.



Warm Up

Theorem

Theorem 5.10 Angle-Side-Angle (ASA) Congruence Theorem

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

If $\angle A \cong \angle D$, $\overline{AC} \cong \overline{DF}$, and $\angle C \cong \angle F$, then $\triangle ABC \cong \triangle DEF$.

ر <u>ک</u>

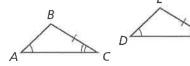
Proof p. 270

Theorem

Theorem 5.11 Angle-Angle-Side (AAS) Congruence Theorem

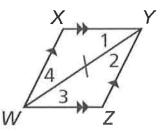
If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

If $\angle A \cong \angle D$, $\angle C \cong \angle F$, and $\overline{BC} \cong \overline{EF}$, then $\triangle ABC \cong \triangle DEF$.



Proof p. 271

1. Can the triangles be proven congruent with the information given in the diagram? If so, state the theorem you would use.



WY = WY Reflexive POC LY = LZ Alt. Int L'S Thm LI = L3 Alt. Int L'S Thm

DWXY = DYZW ASA

Monitoring Progress 1

Given $\overrightarrow{AD} \parallel \overrightarrow{EC}$, $\overrightarrow{BD} \cong \overrightarrow{BC}$ Prove $\triangle ABD \cong \triangle EBC$ B

Given

Given

Given

Given

Given

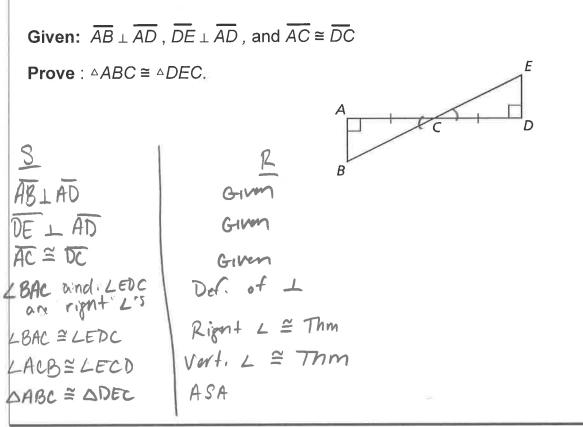
AH. Int L'S Thm

LABO = LEBC

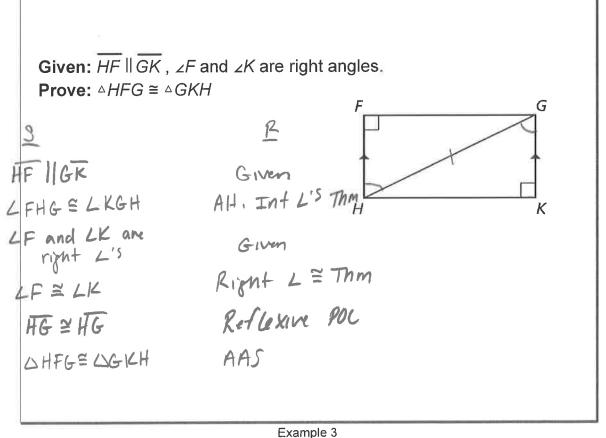
Vert, L'S = Thm

AAS

(This is one way, but there are other ways)



Monitoring Progress 2



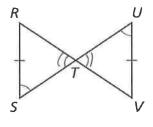
Given: $\angle S \cong \angle U$ and $\overline{RS} \cong \overline{VU}$.

Prove: △RST≅ △VUT.

LS = LV RS = VV LRTS = LVTV ARST = AVUT Given

Given

Vert. $L \cong Thm$ AAS



Monitoring Progress 3

Summary of Triangle Congruence Theorems:

SSS, SAS, HL, ASA, AAS

Homework:

pg. 274 #3-12, 15-20, 24

Closure