6.4 Triangle Midsegment Theorem

Bellwork

Find the measure of the unknown angle(s) in the triangle.

Prove and use properties of triangle midsegments.

An allitude of a triangle is the perpendicular segment from a vertex to the opposite side or to the line that contains the opposite side.

A <u>midsegment of a triangle</u> is a segment that joins the midpoints of two sides of the triangle. Every triangle has three midsegments, which form the *midsegment triangle*.

Midsegments: \overline{XY} , \overline{YZ} , \overline{ZX} Midsegment triangle: $\triangle XYZ$

Theorem 6.8 Triangle Midsegment Theorem

The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long as that side.

 \overline{DE} is a midsegment of $\triangle ABC$, $\overline{DE} \parallel \overline{AC}$ and $DE = \frac{1}{2}AC$.

6.4 Triangle Midsegment Theorem.notebook

Write a coordinate proof of the Triangle Midsegment Theorem for one midsegment,

Given \overline{DE} is a midsegment of $\triangle OBC$.

Prove $\overline{DE} \parallel \overline{OC}$ and DE = (1/2)OC

 $OC = \sqrt{(2p-0)^2 + (0-0)^2}$

$$M = 0 = 0$$

$$\frac{0}{2p} = 0$$

Same Slope:

Find each measure.

$$JL = 2(PN) = 2(36) = 72$$

PM= 1(LK) = 1(97)=48.5

DE = -

Find the value of *n*.

$$2(n+14) = 3n+12$$

 $2n+28 = 3n+12$
 $16 = n$

Find each measure.

$$BD = \frac{1}{2}(17) = 8.5$$

Use the diagram for Items 1-3. Find each measure.

1. ED =
$$\frac{1}{2}(2v) = 10$$

4. ΔXYZ is the midsegment triangle of ΔWUV . What is the perimeter of ΔXYZ ?

Homework: pg. 333 # 3,4, 7-21, 25