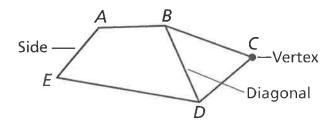

Chapter 7 - Polygons and Quadrilaterals

7.1 Angles in Polygons

Bellwork

Find the value of x in the diagram.


Classify polygons based on their sides and angles.

Find and use the measures of interior and exterior angles of polygons.

A polygon is a closed plane figure formed by three or more <u>segments</u> that intersect only at their endpoints.

<u>side of the polygon</u> - segments that forms a polygon<u>vertex of the polygon</u> - common endpoint of two sides

<u>Diagonal</u> - A segment that connects any two nonconsecutive vertices

7.1 Polygons and Angle Relationships.notebook

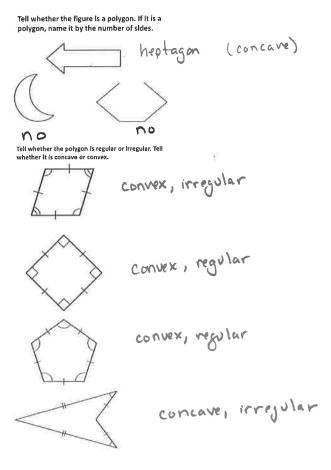
You can name a polygon by the number of its sides.

Number of Sides	Name of Polygon	
3	Triangle	
4	Quadrilateral	
5	Pentagon	
6	Hexagon	
7	Heptagon	
8	Octagon	
9	Nonagon	
10	Decagon	
12	Dodecagon	
n	n-gon	

A polygon is <u>concave</u> if any part of a diagonal contains points in the exterior of the polygon.

(Concave – part of the shape is CAVED IN.)

Concave

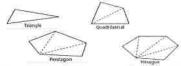

11 sides: hendecagon
13 sides: triclecagon
14 sides: tetradecagon
15 sides: pentadecagon
16 sides: nexadecagon
17 sides: hepta decagon
18 sides: octadegagon
19 sides: chadegagon
20 sides: icosagon

If no diagonal contains points in the exterior, then the polygon is **convex**.

Convex quadrilateral

A <u>regular polygon</u> is one that is both equilateral and equiangular. A regular polygon is always convex.

If a polygon is not regular, it is called irregular.



To find the sum of the interior angle measures of a convex polygon, draw all possible diagonals from one vertex of the polygon, This creates a set of triangles. The sum of the angle measures of all the triangles equals the sum of the angle measures of the polygon.

Rememberi				
By the Triangle Sum of a triangle Is 180°.	Theorem, t	he sum of	the interior angle	measures

Pelygon	Number of Sides	Number of Thorques	Suru of Interior Angle Measure	
Triangle	3	1	(1)180" + 100"	
Quadrilateral	4	4 2		
Pentagon		3	(3)180° µ 540°	
Heragon	- 6	4	(4)180° = 720°	
n-gan	in	ñ=2	(n - 2)180°	

) Corollary

Corollary 7.1 Corollary to the Polygon Interior Angles Theorem
The sum of the measures of the interior angles of a quadrilateral is 360°.

Proof Ex. 43, p. 366

Find the sum of the interior angle measures of a convex heptagon.

Find the measure of each interior angle of a regular 16-gon.

$$(10-2) 180 \qquad \frac{2520}{10} = 157.5^{\circ}$$

$$(14) 180 = 2520$$

The sum of the measures of the interior angles of a convex polygon is 900°. Classify the polygon by the number of sides.

$$(n-2)180 = 900$$
 $\rightarrow n-2=5$
 $180 = 180$ $\rightarrow n-2=5$
 $|n=7|$

Find the measure of angle A in polygon ABCDE

$$2(18c) + 2(32c) + 35c = (5-2)180$$

$$135c = 540$$

$$135c = 540$$

$$135c = 18c^{\circ}$$

$$C = 4$$

$$C = 4$$

$$A = 35(4)$$

$$A = 140^{\circ}$$

Find the sum of the interior angle measures of a convex 15-gon.

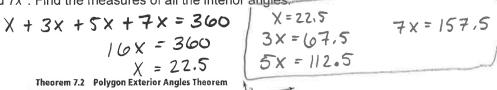
Find the measure of each interior angle of a regular decagon.

The sum of the measures of the interior angles of a convex polygon is 1440°. Classify the polygon by the number of sides.

$$(n-2)180 = 1440$$

$$18$$

$$180$$


$$1-2 = 6$$

$$+7$$

$$+2$$

The measures of the interior angles of a quadrilateral are x° , $3x^{\circ}$,

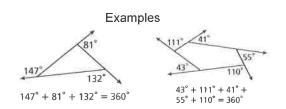
 $5x^{\circ}$, and $7x^{\circ}$. Find the measures of all the interior angles.

The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is 360°.

$$m \angle 1 + m \angle 2 + \cdots + m \angle n = 360^{\circ}$$

Proof Ex. 51, p. 366

2 3 4 n = 5


Remember!

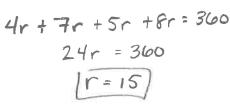
An exterior angle is formed by one side of a polygon and the extension of a consecutive side.

Proof: Because each of the n interior angles forms a linear pair with its corresponding exterior angle, you know that the sum of the measures of the n interior angles is 180n.

Subtracting the sum of the interior angle measures from the sum of the measures of the linear pairs gives you:

$$180n - [(n - 2)180] = 360$$

7.1 Polygons and Angle Relationships.notebook


Find the measure of each exterior angle of a regular 20-gon.

Find the value of x in the diagram.

$$X + 2X + 89 + 67 = 360$$

 $3X + 156 = 360$
 $3X = 204$ $10 - 60$

Find the measure of each exterior angle of a regular dodecagon.

Find the value of r in polygon JKLM.

Homework:

pg. 364 #4 - 30 Evens, 38, 39

In case you were wondering....

Polygons with 21 to 99 sides have a different system. Take the prefix for the tens digit (found on the left column), the ones digit (right column below), and then stick a "kai" between them to get (tens)kai(ones)gon.

```
10 - deca | 1 - hena
20 - icosi | 2 - di
30 - triaconta | 3 - tri
40 - tetraconta | 4 - tetra
50 - pentaconta | 5 - penta
60 - hexaconta | 6 - hexa
70 - heptaconta | 7 - hepta
80 - octaconta | 8 - octa
90 - nonaconta | 9 - nona
```