7.3 - Proving A Quadrilateral is a P-Gram

Theorem 7.7 Parallelogram Opposite Sides Converse

If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$, then ABCD is a parallelogram.

Theorem 7.8 Parallelogram Opposite Angles Converse

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then ABCD is a parallelogram.

Proof Ex. 39, p. 383

In quadrilateral WXYZ, $m \angle W = 42^\circ$, $m \angle X = 138^\circ$, and $m \angle Y = 42^\circ$.

$$360 - 222 = 1380$$

Is WXYZ a parallelogram? Explain your reasoning.

Determine il the quaurhateral must be a parallelogram. Justify your answer.

mLQ=6(6.5)+7 MLR=180-46

= 134

Find the values for a and b that make JKLM a parallelogram and state which condition you are

$$|5a-1| = |0a+4|$$

-10a+11 -10a+11
 $5a = |5|$ $|a=3|$

Find the values of x and y that make PQRS is a parallelogram and state which condition you are using.

$$15a - 11 \underbrace{\frac{K}{5b+6}}_{8b-21} \underbrace{\frac{L}{10a+6}}_{M}$$

Theorem 7.9 Opposite Sides Parallel and Congruent Theorem

If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.

If $\overline{BC} \parallel \overline{AD}$ and $\overline{BC} \cong \overline{AD}$, then ABCD is a parallelogram.

Proof Ex. 40, p. 383

Theorem 7.10 Parallelogram Diagonals Converse

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

If \overline{BD} and \overline{AC} bisect each other, then ABCD is a parallelogram.

Proof Ex. 41, p. 383

For what values of x and y is quadrilateral ABCD a parallelogram? Explain your reasoning.

$$3x-32 = 2x$$

 $-32 = -x$
 $32 = X$

$$4y = y + 87$$

 $3y = 87$
 $1y = 29$

Determine if the quadrilateral must be a parallelogram. Justify your answer.

$$300 - (107 + 107 + 73)$$

 $300 - 287$
 73°
Yes - both opp. L's are \cong

Determine if the quadrilateral must be a parallelogram. Justify your answer.

Other L's are = by third any
Both pair opp L's are =

Determine if each quadrilateral must be a parallelogram. Justify your answer.

Slupe of KL M(3, 5), and N(5, -2) is a parallelogram. Slope of NIL Slope of NIL Slope of LM $-2\left(\frac{-3}{5},\frac{-2}{7}\right)+7$ $+2\left(\frac{3}{5},\frac{-2}{-2}\right)-7$ $-8\left(\frac{5}{-3},0\right)+2$ $+8\left(\frac{-5}{3},\frac{7}{5}\right)-2$ $M=-\frac{7}{2}$ $M=-\frac{7}{2}$ $M=-\frac{7}{2}$ You have learned several ways to determine whether a

You have learned several ways to determine whether a quadrilateral is a parallelogram. You can use the given information about a figure to decide which condition is best to apply.

Both pairs of opposite sides are parallel. (definition) One pair of opposite sides are parallel and congruent. (Theorem 6-3-1) Both pairs of opposite sides are congruent. (Theorem 6-3-2) Both pairs of opposite angles are congruent. (Theorem 6-3-3) One angle is supplementary to both of its consecutive angles. (Theorem 6-3-4) The diagonals bisect each other. (Theorem 6-3-5)

To show that a quadrilateral is a parallelogram, you only have to show that it satisfies one of these sets of conditions.

7.3 Proving Quadrilaterals are PGrams.notebook

December 10, 2018

1. Show that JKLM is a parallelogram for a = 4 and b = 5.

2. Determine if QWRT must be a parallelogram. Justify your answer.

3. Show that the quadrilateral with vertices E(-1, 5), F(2, 4), G(0, -3), and H(-3, -2) is a parallelogram.

$$\left(\frac{-1+0}{2}, \frac{-3+5}{2}\right) \rightarrow \left(\frac{-1}{2}, 1\right)$$

mdpt of EG:
$$\left(-\frac{1+c}{2}, -\frac{3+5}{2}\right) \rightarrow \left(-\frac{1}{2}, 1\right)$$
 mdpt of FH: $\left(2+\frac{(-3)}{2}, \frac{4+(-2)}{2}\right) \rightarrow \left(-\frac{1}{2}, 1\right)$

State the theorem you can use to show that the quadrilateral is a parallelogram.

Ys, both opp L'S ≅

Show that quadrilateral ABCD is a parallelogram.

$$BC = \frac{-3}{3} = -1$$

$$AB = \frac{2}{5}$$

$$Ab = \frac{-3}{3} = -1$$
 $DC = \frac{2}{5}$

Both pair opp sides parallel

Show that quadrilateral JKLM is a parallelogram.

Both pair opp sides parallel

Homework:

pg. 381 #3-8, 11-17, 19, 20, 23, 29, 35-36