8.0 - Simplifying Radical Expressions Bellwork

Simplify the radicals.

$$\sqrt{64x}$$

$$8\sqrt{x}$$

$$\sqrt{112x^2}$$

$$\sqrt{48x^2}$$

$$\sqrt{32x}$$

$$\sqrt{32x}$$

$$\sqrt{48x^2}$$

$$\sqrt{44x^2}$$

$$\sqrt{44x^2}$$

$$\sqrt{44x^2}$$

$$\sqrt{44x^2}$$

<u>rationalizing the denominator – Getting</u> a square root out of the denominator

"multiply top and bottom by a number that produces a perfect square under the radical sign in the denominator."

Simplify by rationalizing the denominator.

$$\frac{3\sqrt{5}}{\sqrt{2}} \cdot \sqrt{2} = \boxed{3\sqrt{10}}{2}$$

Simplify by rationalizing the denominator.

$$\frac{\sqrt{2}}{\sqrt{8}} = \frac{\sqrt{1}}{\sqrt{4}} = \boxed{\frac{1}{4}}$$

$$\frac{3\sqrt{5}}{\sqrt{7}} \quad \sqrt{\frac{7}{7}} = \boxed{3\sqrt{35}}{7}$$

$$\frac{5}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}} = \frac{5\sqrt{10}}{10} = \frac{\sqrt{10}}{2}$$

Simplify by rationalizing the denominator.

$$\frac{\sqrt{4}}{\sqrt{3}} = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

$$\frac{\sqrt{3}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \boxed{\frac{\sqrt{15}}{5}}$$

$$\frac{\sqrt{8}}{2\sqrt{20}} = \frac{\sqrt{2}}{2\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{10}}{2.5} = \frac{\sqrt{10}}{10}$$

$$\frac{3\sqrt{5}}{\sqrt{3}} \cdot \sqrt{3} = 3\sqrt{15} = \sqrt{15}$$

Square roots that have the same radicand are called **like radical terms**.

Like Radicals	$\sqrt{2}$ and $3\sqrt{2}$	$-6\sqrt{15}$ and $7\sqrt{15}$	$\sqrt{ab^2}$ and $4\sqrt{ab^2}$
Unlike Radicals	$2\sqrt{5}$ and $\sqrt{2}$	\sqrt{x} and $\sqrt{3x}$	$\sqrt{xy^2}$ and $\sqrt{x^2y}$

To add or subtract square roots, first simplify each radical term and then combine like radical terms by adding or subtracting their coefficients.

Simplify.

$$9\sqrt{3}+7\sqrt{3} = 10\sqrt{3}$$

$$6\sqrt{5} - \sqrt{20}$$
 $6\sqrt{5} - 2\sqrt{5} = 4\sqrt{5}$

$$\sqrt{80} - 5\sqrt{5} = 4\sqrt{5} - 5\sqrt{5} = -1\sqrt{5} \text{ or } -\sqrt{5}$$

Simplify.

$$-\sqrt{24} - 2\sqrt{27} - \sqrt{6}$$

$$\sqrt{4}\sqrt{6} - 2\sqrt{3}\sqrt{3}$$

$$-2\sqrt{6} - 6\sqrt{3}$$

$$-2\sqrt{6} - 6\sqrt{3}$$

$$3\sqrt{12} - 3\sqrt{20} + 3\sqrt{5}$$

$$3\sqrt{2\sqrt{3}} - 3(2\sqrt{5}) + 3\sqrt{5} = 6\sqrt{3} - 6\sqrt{5} + 3\sqrt{5}$$

$$= 6\sqrt{3} - 3\sqrt{5}$$
Homework:

WS 8.0 - Simplifying Radicals