9.1 - Pythagorean Theorem

Bellwork: Solve the equation.

1.
$$4^{2} + 3^{2} = x^{2}$$
 $16 + 9 = x^{2}$
 $15 = x^{2}$
3. $\left(\frac{5}{2}\right)^{2} + x^{2} = \left(\frac{1}{3}\right)^{2}$

$$\frac{9}{1} \cdot \frac{25}{4} + x^{2} = \frac{1}{9} \cdot \frac{4}{4}$$

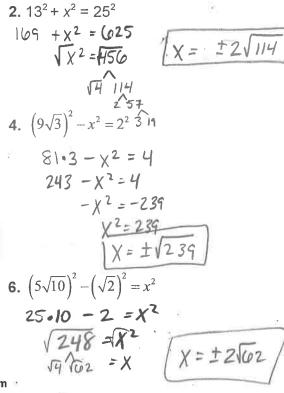
$$-\frac{225}{36} + x^{2} = \frac{1}{36} \cdot \frac{4}{4}$$

$$x^{2} = \frac{-221}{36} \cdot \frac{80}{4} \cdot \frac{1}{36} \cdot$$

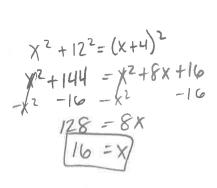
Theorem 9.1 Pythagorean Theorem

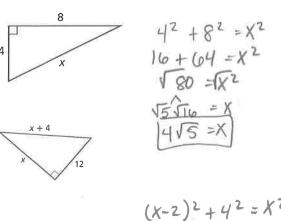
In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

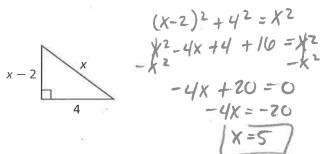
Proof Explorations 1 and 2, p. 463; Ex. 39, p. 484



Solve for x.







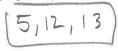
9.1 - Pythagorean Theorem.notebook

Common Pythagorean Triples and Some of Their Multiples

3, 4, 5 6, 8, 10 9, 12, 15	5, 12, 13	8, 15, 17	7, 24, 25
	10, 24, 26 15, 36, 39	16, 30, 34 24, 45, 51	14, 48, 50 21, 72, 75

The most common Pythagorean triples are in bold. The other triples are the result of multiplying each integer in a bold-faced triple by the same factor.

Find the value of x. Then tell whether the side lengths form a Pylhagorean triple.



Find the value of x. Then tell whether the side lengths form a

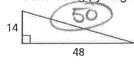
$$7^{2} + \chi^{2} = 14^{2}$$
 $49 + \chi^{2} = 190$
 $\chi^{2} = 1147$

$$X = \sqrt{49}\sqrt{3}$$

$$X = 7\sqrt{3}$$

Not a triplet

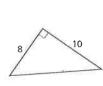
Determine if the third side length could be found using pythagorean triplets.

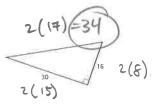


12

$$4^{2} + x^{2} = 12^{2}$$
 $10 + x^{2} = 144$
 $\sqrt{x^{2}} = \sqrt{128}$
 $\sqrt{x} = 8\sqrt{2}$

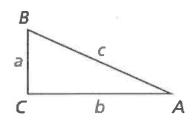
(7-24-25)





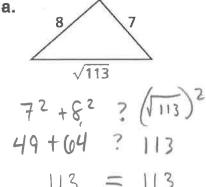
Converse of the Pythagorean Theorem:

If $c^2 = a^2 + b^2$, then ABC is a right triangle.

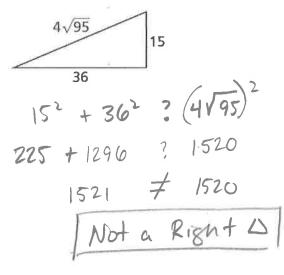


** use the longest side as "c"

Tell whether each triangle is a right triangle.

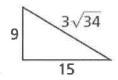


b.

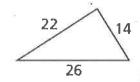


9.1 - Pythagorean Theorem.notebook

Tell whether the triangle is a right triangle.



$$9^{2} + 15^{2}$$
? $(3134)^{2}$
 $81 + 225$? 306
 $306 = 306$
| Right \triangle



$$22^{2} + 14^{2} ? 26^{2}$$

 $484 + 196 ? 676$
 $680 \neq 676$
| Not a Right \triangle |

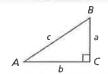
Theorem 9.3 Pythagorean Inequalities Theorem

For any $\triangle ABC$, where c is the length of the longest side, the following statements are true.

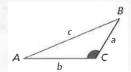
If $c^2 < a^2 + b^2$, then $\triangle ABC$ is acute.

If
$$c^2 > a^2 + b^2$$
, then $\triangle ABC$ is obtuse.

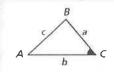
If $c^2 = a^2 + b^2$, then $\triangle ABC$ is a right triangle by the Converse of the Pythagorean Theorem. So $m \angle C = 90^\circ$.



If $c^2 > a^2 + b^2$, then c has increased. By the Converse of the Hinge Theorem, $m \angle C$ has also increased. So $m \angle C > 90^\circ$.



If $c^2 < a^2 + b^2$, then c has decreased. By the Converse of the Hinge Theorem, $m \angle C$ has also decreased. So $m \angle C < 90^\circ$.



9.1 - Pythagorean Theorem.notebook

Verify the segments form a triangle. If so, is the triangle, acute, right or obtuse?

4.3 feet, 5.2 feet, and 6.1 feet

4.3 + 5.2 > 6.1
Forms a
$$\triangle$$

(4.3)² + (5.2)² ? (6.1)²

18.44 + 27.04 37.21

45.53 > 37.21

45.53 > 37.21

Acute

2.1, 2.8, and 3.5

2.1, 2.8, and 3.5

2.1 + 2:8 > 3.5
Triangue

2.1, 2.8, and 3.5

Homework:

pg. 468 #5-10, 17-19, 24,25,27,28 31,32,37