9.6 Solving Right Triangles

Find the value of x. Then find the value of sin θ , cos θ , and tan θ for the triangle.

1.

$$7^{2} + \chi^{2} = 10^{2}$$

 $49 + \chi^{2} = 100$
 $\chi^{2} = 51$
 $\chi = \sqrt{51}$

$$\sin \theta = \frac{7}{10} \quad \tan \theta = \frac{7}{10} = \frac{7\sqrt{51}}{51}$$

2.

$$15^{2} + 22^{2} = X^{2}$$

$$225 + 484 = X^{2}$$

$$709 = X^{2}$$

$$X = \sqrt{709}$$

$$\sin \theta = \frac{22}{\sqrt{709}} = \frac{22\sqrt{709}}{709}$$

$$\cos \theta = \frac{15}{\sqrt{709}} = \frac{15\sqrt{709}}{709}$$

Decide whether you can use the given information to prove \triangle ABC \cong \triangle XYZ. Explain your reasoning.

1.
$$\angle A \cong \angle X$$
, $\angle Z \cong \angle C$, $\overline{BC} \cong \overline{YZ}$

2.
$$\angle Y \cong \angle B$$
, $\angle A \cong \angle X$, $\angle Z \cong \angle C$
No; Similar but not \cong

3.
$$\overline{CA} \perp \overline{AB}, \overline{ZX} \perp \overline{XY}, \overline{CB} \cong \overline{ZY}, \overline{YX} \cong \overline{BA}$$

Ves: HL

9.6 - Solving Right Triangles.notebook

Determine which of the two acute angles has a cosine of 0.5.

Inverse Trigonometric Ratios

Let $\angle A$ be an acute angle.

Inverse Tangent If
$$\tan A = x$$
, then $\tan^{-1} x = m \angle A$. $\tan^{-1} \frac{BC}{AC} = m \angle A$

$$\tan^{-1}\frac{BC}{AC} = m\angle A$$

Inverse Sine If
$$\sin A = y$$
, then $\sin^{-1} y = m \angle A$.

$$\sin^{-1}\frac{BC}{AB} = m\angle A$$

Inverse Cosine If
$$\cos A = z$$
, then $\cos^{-1} z = m \angle A$. $\cos^{-1} \frac{AC}{AB} = m \angle A$

$$\cos^{-1}\frac{AC}{AB} = m \angle A$$

***To find unknown angles in a Right Triangle, we use inverse trig functions

****To know which trig function to use, look at what sides are given to us.

9.6 - Solving Right Triangles.notebook

Find the measure of the missing angle.

$$\cos^{-1}\left(\frac{5}{5.75}\right) = 29.59^{\circ}$$

$$\tan^{-1}\left(\frac{7}{11}\right) = 32.470$$

7

Solving a Right Triangle

To solve a right triangle means to find all unknown side lengths and angle measures. You can solve a right triangle when you know either of the following

- · two side lengths
- one side length and the measure of one acute angle

tenth.

6.

 $20^2 + 21^2 = X^2$

$$MLE = tan^{-1} \left(\frac{20}{21} \right) = 43.60^{\circ}$$

 $MLD = 90 - 43.60 = 46.40^{\circ}$

The coordinates of the vertices of $\triangle PQR$ are P(-3, 3), Q(2, 3), and R(-3, -4). Find the side lengths to the nearest hundredth and the angle measures to the nearest degree.

$$5^{2}+7^{2}=C$$
 $25+49=C^{2}$
 $74=C^{2}$

PQ=5

PQ=5

PR=7

$$25+49=c^2$$
 $mLP=90^\circ$
 $mLQ=tan^{-1}(\frac{\pi}{5})=54.46^\circ$
 $mLR=90-54.46=35.54^\circ$

The coordinates of the vertices of $\triangle RST$ are R(-3, 5), S(4, 5), and T(4, -2). Find the side lengths to the nearest hundredth and the angle measures to the nearest degree.

$$RS = 7$$
 $mLS = 90$
 $ST = 7$ $mLR = mLT = 450$

9.6 - Solving Right Triangles.notebook

Your school is building a raked stage. The stage will be 30 feet long from front to back, with a total rise of 2 feet. You want the rake (angle of elevation) to be 5° or less for safety. Is the raked stage within your desired range?

$$X = \sin^{-1}\left(\frac{2}{30}\right) = 3.82^{\circ}$$
 $| \sqrt{e5}, 3.82 < 5 |$

9. WHAT IF? In Example 5, suppose another raked stage is 20 feet long from front to back with a total rise of 2 feet. Is the raked stage within your desired range?

$$SIM^{-1}\left(\frac{2}{20}\right) = 5.740$$

Solve the right triangle. Round decimal answers to the nearest tenth.

$$Y=8.5$$
 mLX=52
 $Z=13.8$ mLZ=90
 $X=10.9$ mLY=90-52
= 380

$$tan52 = \frac{x}{8.5}$$

8.5 tan52 = x
10.9 = x

Homework: WS 9.6 - Solving Right Triangles