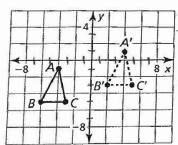
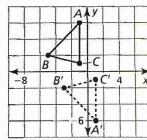

Practice A

In Exercises 1 and 2, identify any congruent figures in the coordinate plane. Explain.


01,2,9

□ 3,10 △ 5,8

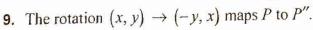
In Exercises 3 and 4, describe a congruence transformation that maps $\triangle ABC$ to $\triangle A'B'C'$.


48,27

3.

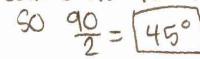
2,6

translation


reflect across X-axis translate < 2,07

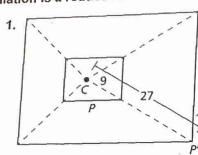
In Exercises 5 and 6, determine whether the polygons with the given vertices are congruent. Use transformations to explain your reasoning.

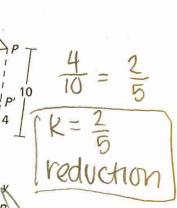
- 5. A(5, 2), B(2, 2), C(2, 7) and S(-4, -5), T(-1, -5), U(-1, 0) reflect in U-0X(S-1Y-0Y) 6. E(6, -2), F(10, -2), G(10, -8), H(6, -8) and W(4, 8), X(4, 10), Y(8, 10), Z(8, 8)
- not 2, can't use rigid moti
- 7. In the figure, $a \parallel b$, $\triangle CDE$ is reflected in line a, and $\triangle C'D'E'$ is reflected in line b. List three pairs of segments that are parallel to each other. Then determine whether any segments are congruent to EE".


In Exercises 8 and 9, find the measure of the acute or right angle formed by intersecting lines so that P can be mapped to P'' using two reflections.

- **8.** A rotation of 28° maps P to P''.

(-yix) is 270° counterclockwise which is same as 90° clockwise

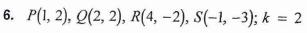

Resources by Chapter


Copyright @ Big Ideas Learning, LLC All rights reserved

Practice A

In Exercises 1 and 2, find the scale factor of the dilation. Then tell whether the dilation is a reduction or an enlargement.

2.


In Exercises 3-5, copy the diagram. Then use a compass and straightedge to construct a dilation of quadrilateral ABCD with the given center and scale factor k.

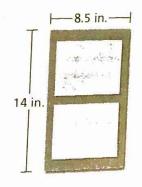
3. Center
$$B, k = 3$$

4. Center
$$P$$
, $k = \frac{1}{2}$

5. Center
$$C, k = 75\%$$

In Exercises 6 and 7, graph the polygon and its image after a dilation with a scale factor k.

the loss of the edges of your picture?


6. P(1, 2), Q(2, 2), R(4, -2), S(-1, -3); k = 2 P(2, 4) Q'(4, 4) R'(8, -4) S'(-2, -4)

7. A(-4, 4), B(-2, 6), C(1, -1), D(-2, -4); k = (-75)

A'(3,-3) B'(3,-9) C'(23,3) D'(3,3)

8. A standard piece of paper is 8.5 inches by 11 inches. A piece of legal-size paper is 8.5 inches by 14 inches. By what scale factor k would you need to dilate the standard paper so that you could fit two pages on a single piece of legal paper?

The old film-style cameras created photos that were best printed at 3.5 inghes by 5 inches Todal 's new digital cameras create photos that are best printed at 4 inches by 6 inches. Neither size picture will scale perfectly to fit in an 11-inch by 14 inch frame Which type of camera will you minimize

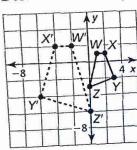
- 10. Your friend claims that if you dilate a rectangle by a certain scale factor, then the area of the object also increases or decreases by the same amount Is your friend correct? Explain your reasoning.
- 11. Would it make sense to state "A dilation has a scale factor of 1?" Explain your reasoning.

no, it won't change the image

4.6

Practice A

In Exercises 1 and 2, graph $\triangle PQR$ with vertices P(-1, 5), Q(-4, 3), and R(-2, 1)and its image after the similarity transformation.


1. Rotation: 180° about the origin

Dilation:
$$(x, y) \rightarrow (2x, 2y)$$

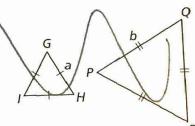
2. Dilation: $(x, y) \rightarrow \left(\frac{1}{2}x, \frac{1}{2}y\right)$

Reflection: in the x-axis

3. Describe a similarity transformation that maps the black preimage onto the dashed image.

reflection in y-axis then dilate by k=2

In Exercises 4 and 5, determine whether the polygons with the given vertices are similar. Use transformations to explain your reasoning.


4. A(-2, 5), B(-2, 2), C(-1, 2) and O(5, -1) **5.** J(-5, -3), K(-3, -1), L(-3, -5), M(-5, -5) and D(3, 3), E(3, 1), F(2, 1) O(5, -1) O(5, -1)

rotate 180°

Prove that the figures are similar. (3x, 3y)

Given Equilateral $\triangle GHI$ with side length a, equilateral ΔPQI with side length b

 $\triangle GHI$ is similar to $\triangle PQR$ Prove

then (12x, 24)

- 7. Your friend claims you can use a similarity transformation to turn a square into a rectangle. Is your friend correct? Explain your answer.
- 8. Is the composition of a dilation and a translation commutative? In other words, do you obtain the same image regardless of the order in which the transformations are performed? Justify your answer.
- 9. The image shown is known as a Sierpinski triangle. It is a common/mathematical construct in the area of/fractals. What can you say about the similarity transformations used to create the white triangles in this image?

$$\begin{array}{cccc}
(-x_{1}-y) \\
180^{\circ} & (2x_{1}2y) \\
P(-1,5) & \rightarrow P^{1}(1,-5) & \rightarrow P''(2,-10) \\
Q(-4,3) & Q'(4,-3) & Q''(8,-6) \\
P(-2,1) & P'(2,-1) & P''(4,-2)
\end{array}$$

when the respect to a solid a feet to the solid at the first time of the

THE THE PART OF THE PROPERTY OF THE PARTY OF

The second of th

A pro-